1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
#include "memory.h"
size_t clamp_top(size_t size, size_t top)
{
return size > top ? top : size;
}
uintptr_t mem_clamp_top(uintptr_t mem, uintptr_t top)
{
return mem > top ? top : mem;
}
b8 is_power_of_two(uintptr_t x) {
return (x & (x-1)) == 0;
}
uintptr_t align_forward(uintptr_t ptr, size_t alignment) {
uintptr_t p, a, modulo;
assert(is_power_of_two(alignment));
p = ptr;
a = (uintptr_t)alignment;
modulo = p & (a-1);
if (modulo != 0) {
p += (a - modulo);
}
return p;
}
//===========================================================================================
// ---------------------------------- Arena -------------------------------------------------
//===========================================================================================
/*
A cases where arena allocation WILL fail:
| size = size_t + ${some_number_that_comes_up_higher_than_offset}
This is because there is no check being made
*/
void arena_init(struct Arena* a, unsigned char* backing_store, size_t capacity) {
a->buffer = backing_store;
a->curr_offset = 0;
a->prev_offset = 0;
a->capacity = capacity;
}
void* arena_alloc_aligned(struct Arena* a, size_t size, size_t alignment) {
void* ptr = NULL;
assert(is_power_of_two(alignment));
uintptr_t curr_ptr = (uintptr_t)a->buffer + a->curr_offset;
uintptr_t offset = align_forward(curr_ptr, alignment);
offset = offset - (uintptr_t)a->buffer;
if (size <= a->capacity - offset)
{
ptr = &a->buffer[offset];
a->prev_offset = a->curr_offset;
a->curr_offset = offset + size;
memset(ptr, 0, size);
}
return ptr;
}
void* arena_alloc(struct Arena* a, size_t size) {
return arena_alloc_aligned(a, size, DEFAULT_ALIGNMENT);
}
void* arena_resize_aligned(struct Arena* a, void* old_memory, size_t old_size,
size_t new_size, size_t alignment)
{
unsigned char* old = (unsigned char*)old_memory;
void* ptr = NULL;
assert(is_power_of_two(alignment));
if (old >= a->buffer && old < a->buffer + a->capacity)
{
if (a->buffer + a->prev_offset == old)
{
// extend_last_element
if (new_size > old_size)
{
size_t size_increase = new_size - old_size;
if (size_increase > (a->capacity - a->curr_offset))
{
new_size = old_size;
size_increase = 0;
}
memset(&a->buffer[a->curr_offset], 0, size_increase);
}
a->curr_offset = a->prev_offset + new_size;
ptr = old_memory;
}
else
{
ptr = arena_alloc_aligned(a, new_size, alignment);
if (ptr != NULL)
{
size_t copy_size = old_size < new_size ? old_size : new_size;
memmove(ptr, old_memory, copy_size);
}
}
}
return ptr;
}
void* arena_resize(struct Arena* a, void* old_mem, size_t old_size,
size_t new_size) {
return arena_resize_aligned(a, old_mem, old_size, new_size, DEFAULT_ALIGNMENT);
}
void arena_clear(struct Arena *a) {
a->curr_offset = 0;
a->prev_offset = 0;
}
//===========================================================================================
// ---------------------------------- STACK -------------------------------------------------
//===========================================================================================
void stack_init(struct stack* s, void *backing_store, size_t capacity)
{
s->buffer = (unsigned char*)backing_store;
s->prev_offset = 0;
s->curr_offset = 0;
s->capacity = capacity;
}
uintptr_t fast_modulo(uintptr_t p, uintptr_t a)
{
return (p & (a-1));
}
size_t calc_padding_with_header(uintptr_t ptr, uintptr_t alignment, size_t hdr_sz)
{
uintptr_t p, a, modulo, padding, space_needed;
assert(is_power_of_two(alignment));
padding = space_needed = 0;
p = ptr;
a = alignment;
modulo = fast_modulo(p, a);
if (modulo != 0) {
padding = a - modulo;
}
space_needed = (uintptr_t)hdr_sz;
if (padding < space_needed)
{
space_needed -= padding;
if (fast_modulo(space_needed, a) != 0)
{
padding = padding + space_needed + a;
}
else
{
padding = padding + space_needed;
}
}
return (size_t)padding;
}
struct ResVoid stack_alloc_aligned(struct stack* s, size_t size, size_t alignment)
{
uintptr_t curr_addr, next_addr;
size_t padding;
struct stack_hdr *header;
assert(is_power_of_two(alignment));
if (alignment > 128) {
alignment = 128;
}
struct ResVoid result = {0};
curr_addr = (uintptr_t)s->buffer + (uintptr_t)s->curr_offset;
padding = calc_padding_with_header(curr_addr, (uintptr_t)alignment, sizeof(struct stack_hdr));
if (size > s->capacity - (s->curr_offset + padding))
{
result.status = MEM_FULL;
return result;
}
next_addr = curr_addr + (uintptr_t)padding;
header = (struct stack_hdr*)(next_addr - sizeof(struct stack_hdr));
header->prev_offset = s->prev_offset;
header->padding = padding;
s->prev_offset = s->curr_offset + padding;
s->curr_offset = s->prev_offset + size;
result.memory = memset((void *)next_addr, 0, size);
result.bytes_count = size;
return result;
}
struct ResVoid stack_alloc(struct stack* s, size_t size)
{
return stack_alloc_aligned(s, size, DEFAULT_ALIGNMENT);
}
enum MemStatus stack_free(struct stack* s)
{
uintptr_t last_ele = (uintptr_t)s->buffer + (uintptr_t)s->prev_offset;
struct stack_hdr *header = (struct stack_hdr *)(last_ele - sizeof(struct stack_hdr));
uintptr_t prev_ele = (uintptr_t)s->buffer + (uintptr_t)header->prev_offset;
s->curr_offset = (size_t)((last_ele - (uintptr_t)header->padding) - (uintptr_t)s->buffer);
s->prev_offset = (size_t)(prev_ele - (uintptr_t)s->buffer);
return MEM_OK;
}
struct ResVoid stack_resize_aligned(struct stack* s, void* old_memory, size_t old_size,
size_t new_size, size_t alignment)
{
struct ResVoid result = {0};
if (old_memory < s->buffer || old_memory > s->buffer + s->capacity)
{
result.status = MEM_OUT_OF_BOUNDS;
return result;
}
// is_last_element()
if (s->buffer + s->prev_offset == old_memory)
{
if (new_size > old_size)
{
size_t size_difference = new_size - old_size;
if (size_difference > s->capacity - s->curr_offset)
{
result.status = MEM_FULL;
return result;
}
memset(&s->buffer[s->curr_offset], 0, size_difference);
}
s->curr_offset = s->prev_offset + new_size;
result.memory = old_memory;
return result;
}
result = stack_alloc_aligned(s, new_size, alignment);
size_t min_size = old_size < result.bytes_count ? old_size : result.bytes_count;
memmove(result.memory, old_memory, min_size);
return result;
}
struct ResVoid stack_resize(struct stack* s, void* old_memory, size_t old_size, size_t new_size)
{
return stack_resize_aligned(s, old_memory, old_size, new_size, DEFAULT_ALIGNMENT);
}
void stack_clear(struct stack* s)
{
s->prev_offset = 0;
s->curr_offset = 0;
}
|