1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
|
/****************************************************************************
*
* ftcalc.h
*
* Arithmetic computations (specification).
*
* Copyright (C) 1996-2023 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
#ifndef FTCALC_H_
#define FTCALC_H_
#include <freetype/freetype.h>
#include "compiler-macros.h"
FT_BEGIN_HEADER
/**************************************************************************
*
* FT_MulDiv() and FT_MulFix() are declared in freetype.h.
*
*/
#ifndef FT_CONFIG_OPTION_NO_ASSEMBLER
/* Provide assembler fragments for performance-critical functions. */
/* These must be defined `static __inline__' with GCC. */
#if defined( __CC_ARM ) || defined( __ARMCC__ ) /* RVCT */
#define FT_MULFIX_ASSEMBLER FT_MulFix_arm
/* documentation is in freetype.h */
static __inline FT_Int32
FT_MulFix_arm( FT_Int32 a,
FT_Int32 b )
{
FT_Int32 t, t2;
__asm
{
smull t2, t, b, a /* (lo=t2,hi=t) = a*b */
mov a, t, asr #31 /* a = (hi >> 31) */
add a, a, #0x8000 /* a += 0x8000 */
adds t2, t2, a /* t2 += a */
adc t, t, #0 /* t += carry */
mov a, t2, lsr #16 /* a = t2 >> 16 */
orr a, a, t, lsl #16 /* a |= t << 16 */
}
return a;
}
#endif /* __CC_ARM || __ARMCC__ */
#ifdef __GNUC__
#if defined( __arm__ ) && \
( !defined( __thumb__ ) || defined( __thumb2__ ) ) && \
!( defined( __CC_ARM ) || defined( __ARMCC__ ) )
#define FT_MULFIX_ASSEMBLER FT_MulFix_arm
/* documentation is in freetype.h */
static __inline__ FT_Int32
FT_MulFix_arm( FT_Int32 a,
FT_Int32 b )
{
FT_Int32 t, t2;
__asm__ __volatile__ (
"smull %1, %2, %4, %3\n\t" /* (lo=%1,hi=%2) = a*b */
"mov %0, %2, asr #31\n\t" /* %0 = (hi >> 31) */
#if defined( __clang__ ) && defined( __thumb2__ )
"add.w %0, %0, #0x8000\n\t" /* %0 += 0x8000 */
#else
"add %0, %0, #0x8000\n\t" /* %0 += 0x8000 */
#endif
"adds %1, %1, %0\n\t" /* %1 += %0 */
"adc %2, %2, #0\n\t" /* %2 += carry */
"mov %0, %1, lsr #16\n\t" /* %0 = %1 >> 16 */
"orr %0, %0, %2, lsl #16\n\t" /* %0 |= %2 << 16 */
: "=r"(a), "=&r"(t2), "=&r"(t)
: "r"(a), "r"(b)
: "cc" );
return a;
}
#endif /* __arm__ && */
/* ( __thumb2__ || !__thumb__ ) && */
/* !( __CC_ARM || __ARMCC__ ) */
#if defined( __i386__ )
#define FT_MULFIX_ASSEMBLER FT_MulFix_i386
/* documentation is in freetype.h */
static __inline__ FT_Int32
FT_MulFix_i386( FT_Int32 a,
FT_Int32 b )
{
FT_Int32 result;
__asm__ __volatile__ (
"imul %%edx\n"
"movl %%edx, %%ecx\n"
"sarl $31, %%ecx\n"
"addl $0x8000, %%ecx\n"
"addl %%ecx, %%eax\n"
"adcl $0, %%edx\n"
"shrl $16, %%eax\n"
"shll $16, %%edx\n"
"addl %%edx, %%eax\n"
: "=a"(result), "=d"(b)
: "a"(a), "d"(b)
: "%ecx", "cc" );
return result;
}
#endif /* i386 */
#endif /* __GNUC__ */
#ifdef _MSC_VER /* Visual C++ */
#ifdef _M_IX86
#define FT_MULFIX_ASSEMBLER FT_MulFix_i386
/* documentation is in freetype.h */
static __inline FT_Int32
FT_MulFix_i386( FT_Int32 a,
FT_Int32 b )
{
FT_Int32 result;
__asm
{
mov eax, a
mov edx, b
imul edx
mov ecx, edx
sar ecx, 31
add ecx, 8000h
add eax, ecx
adc edx, 0
shr eax, 16
shl edx, 16
add eax, edx
mov result, eax
}
return result;
}
#endif /* _M_IX86 */
#endif /* _MSC_VER */
#if defined( __GNUC__ ) && defined( __x86_64__ )
#define FT_MULFIX_ASSEMBLER FT_MulFix_x86_64
static __inline__ FT_Int32
FT_MulFix_x86_64( FT_Int32 a,
FT_Int32 b )
{
/* Temporarily disable the warning that C90 doesn't support */
/* `long long'. */
#if __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 6 )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlong-long"
#endif
#if 1
/* Technically not an assembly fragment, but GCC does a really good */
/* job at inlining it and generating good machine code for it. */
long long ret, tmp;
ret = (long long)a * b;
tmp = ret >> 63;
ret += 0x8000 + tmp;
return (FT_Int32)( ret >> 16 );
#else
/* For some reason, GCC 4.6 on Ubuntu 12.04 generates invalid machine */
/* code from the lines below. The main issue is that `wide_a' is not */
/* properly initialized by sign-extending `a'. Instead, the generated */
/* machine code assumes that the register that contains `a' on input */
/* can be used directly as a 64-bit value, which is wrong most of the */
/* time. */
long long wide_a = (long long)a;
long long wide_b = (long long)b;
long long result;
__asm__ __volatile__ (
"imul %2, %1\n"
"mov %1, %0\n"
"sar $63, %0\n"
"lea 0x8000(%1, %0), %0\n"
"sar $16, %0\n"
: "=&r"(result), "=&r"(wide_a)
: "r"(wide_b)
: "cc" );
return (FT_Int32)result;
#endif
#if __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 6 )
#pragma GCC diagnostic pop
#endif
}
#endif /* __GNUC__ && __x86_64__ */
#endif /* !FT_CONFIG_OPTION_NO_ASSEMBLER */
#ifdef FT_CONFIG_OPTION_INLINE_MULFIX
#ifdef FT_MULFIX_ASSEMBLER
#define FT_MulFix( a, b ) FT_MULFIX_ASSEMBLER( (FT_Int32)(a), (FT_Int32)(b) )
#endif
#endif
/**************************************************************************
*
* @function:
* FT_MulDiv_No_Round
*
* @description:
* A very simple function used to perform the computation '(a*b)/c'
* (without rounding) with maximum accuracy (it uses a 64-bit
* intermediate integer whenever necessary).
*
* This function isn't necessarily as fast as some processor-specific
* operations, but is at least completely portable.
*
* @input:
* a ::
* The first multiplier.
* b ::
* The second multiplier.
* c ::
* The divisor.
*
* @return:
* The result of '(a*b)/c'. This function never traps when trying to
* divide by zero; it simply returns 'MaxInt' or 'MinInt' depending on
* the signs of 'a' and 'b'.
*/
FT_BASE( FT_Long )
FT_MulDiv_No_Round( FT_Long a,
FT_Long b,
FT_Long c );
/**************************************************************************
*
* @function:
* FT_MulAddFix
*
* @description:
* Compute `(s[0] * f[0] + s[1] * f[1] + ...) / 0x10000`, where `s[n]` is
* usually a 16.16 scalar.
*
* @input:
* s ::
* The array of scalars.
* f ::
* The array of factors.
* count ::
* The number of entries in the array.
*
* @return:
* The result of `(s[0] * f[0] + s[1] * f[1] + ...) / 0x10000`.
*
* @note:
* This function is currently used for the scaled delta computation of
* variation stores. It internally uses 64-bit data types when
* available, otherwise it emulates 64-bit math by using 32-bit
* operations, which produce a correct result but most likely at a slower
* performance in comparison to the implementation base on `int64_t`.
*
*/
FT_BASE( FT_Int32 )
FT_MulAddFix( FT_Fixed* s,
FT_Int32* f,
FT_UInt count );
/*
* A variant of FT_Matrix_Multiply which scales its result afterwards. The
* idea is that both `a' and `b' are scaled by factors of 10 so that the
* values are as precise as possible to get a correct result during the
* 64bit multiplication. Let `sa' and `sb' be the scaling factors of `a'
* and `b', respectively, then the scaling factor of the result is `sa*sb'.
*/
FT_BASE( void )
FT_Matrix_Multiply_Scaled( const FT_Matrix* a,
FT_Matrix *b,
FT_Long scaling );
/*
* Check a matrix. If the transformation would lead to extreme shear or
* extreme scaling, for example, return 0. If everything is OK, return 1.
*
* Based on geometric considerations we use the following inequality to
* identify a degenerate matrix.
*
* 32 * abs(xx*yy - xy*yx) < xx^2 + xy^2 + yx^2 + yy^2
*
* Value 32 is heuristic.
*/
FT_BASE( FT_Bool )
FT_Matrix_Check( const FT_Matrix* matrix );
/*
* A variant of FT_Vector_Transform. See comments for
* FT_Matrix_Multiply_Scaled.
*/
FT_BASE( void )
FT_Vector_Transform_Scaled( FT_Vector* vector,
const FT_Matrix* matrix,
FT_Long scaling );
/*
* This function normalizes a vector and returns its original length. The
* normalized vector is a 16.16 fixed-point unit vector with length close
* to 0x10000. The accuracy of the returned length is limited to 16 bits
* also. The function utilizes quick inverse square root approximation
* without divisions and square roots relying on Newton's iterations
* instead.
*/
FT_BASE( FT_UInt32 )
FT_Vector_NormLen( FT_Vector* vector );
/*
* Return -1, 0, or +1, depending on the orientation of a given corner. We
* use the Cartesian coordinate system, with positive vertical values going
* upwards. The function returns +1 if the corner turns to the left, -1 to
* the right, and 0 for undecidable cases.
*/
FT_BASE( FT_Int )
ft_corner_orientation( FT_Pos in_x,
FT_Pos in_y,
FT_Pos out_x,
FT_Pos out_y );
/*
* Return TRUE if a corner is flat or nearly flat. This is equivalent to
* saying that the corner point is close to its neighbors, or inside an
* ellipse defined by the neighbor focal points to be more precise.
*/
FT_BASE( FT_Int )
ft_corner_is_flat( FT_Pos in_x,
FT_Pos in_y,
FT_Pos out_x,
FT_Pos out_y );
/*
* Return the most significant bit index.
*/
#ifndef FT_CONFIG_OPTION_NO_ASSEMBLER
#if defined( __clang__ ) || ( defined( __GNUC__ ) && \
( __GNUC__ > 3 || ( __GNUC__ == 3 && __GNUC_MINOR__ >= 4 ) ) )
#if FT_SIZEOF_INT == 4
#define FT_MSB( x ) ( 31 - __builtin_clz( x ) )
#elif FT_SIZEOF_LONG == 4
#define FT_MSB( x ) ( 31 - __builtin_clzl( x ) )
#endif
#elif defined( _MSC_VER ) && _MSC_VER >= 1400
#if defined( _WIN32_WCE )
#include <cmnintrin.h>
#pragma intrinsic( _CountLeadingZeros )
#define FT_MSB( x ) ( 31 - _CountLeadingZeros( x ) )
#elif defined( _M_ARM64 ) || defined( _M_ARM )
#include <intrin.h>
#pragma intrinsic( _CountLeadingZeros )
#define FT_MSB( x ) ( 31 - _CountLeadingZeros( x ) )
#elif defined( _M_IX86 ) || defined( _M_AMD64 ) || defined( _M_IA64 )
#include <intrin.h>
#pragma intrinsic( _BitScanReverse )
static __inline FT_Int32
FT_MSB_i386( FT_UInt32 x )
{
unsigned long where;
_BitScanReverse( &where, x );
return (FT_Int32)where;
}
#define FT_MSB( x ) FT_MSB_i386( x )
#endif
#elif defined( __WATCOMC__ ) && defined( __386__ )
extern __inline FT_Int32
FT_MSB_i386( FT_UInt32 x );
#pragma aux FT_MSB_i386 = \
"bsr eax, eax" \
__parm [__eax] __nomemory \
__value [__eax] \
__modify __exact [__eax] __nomemory;
#define FT_MSB( x ) FT_MSB_i386( x )
#elif defined( __DECC ) || defined( __DECCXX )
#include <builtins.h>
#define FT_MSB( x ) (FT_Int)( 63 - _leadz( x ) )
#elif defined( _CRAYC )
#include <intrinsics.h>
#define FT_MSB( x ) (FT_Int)( 31 - _leadz32( x ) )
#endif /* FT_MSB macro definitions */
#endif /* !FT_CONFIG_OPTION_NO_ASSEMBLER */
#ifndef FT_MSB
FT_BASE( FT_Int )
FT_MSB( FT_UInt32 z );
#endif
/*
* Return sqrt(x*x+y*y), which is the same as `FT_Vector_Length' but uses
* two fixed-point arguments instead.
*/
FT_BASE( FT_Fixed )
FT_Hypot( FT_Fixed x,
FT_Fixed y );
#if 0
/**************************************************************************
*
* @function:
* FT_SqrtFixed
*
* @description:
* Computes the square root of a 16.16 fixed-point value.
*
* @input:
* x ::
* The value to compute the root for.
*
* @return:
* The result of 'sqrt(x)'.
*
* @note:
* This function is not very fast.
*/
FT_BASE( FT_Int32 )
FT_SqrtFixed( FT_Int32 x );
#endif /* 0 */
#define INT_TO_F26DOT6( x ) ( (FT_Long)(x) * 64 ) /* << 6 */
#define INT_TO_F2DOT14( x ) ( (FT_Long)(x) * 16384 ) /* << 14 */
#define INT_TO_FIXED( x ) ( (FT_Long)(x) * 65536 ) /* << 16 */
#define F2DOT14_TO_FIXED( x ) ( (FT_Long)(x) * 4 ) /* << 2 */
#define FIXED_TO_INT( x ) ( FT_RoundFix( x ) >> 16 )
#define ROUND_F26DOT6( x ) ( ( (x) + 32 - ( x < 0 ) ) & -64 )
/*
* The following macros have two purposes.
*
* - Tag places where overflow is expected and harmless.
*
* - Avoid run-time sanitizer errors.
*
* Use with care!
*/
#define ADD_INT( a, b ) \
(FT_Int)( (FT_UInt)(a) + (FT_UInt)(b) )
#define SUB_INT( a, b ) \
(FT_Int)( (FT_UInt)(a) - (FT_UInt)(b) )
#define MUL_INT( a, b ) \
(FT_Int)( (FT_UInt)(a) * (FT_UInt)(b) )
#define NEG_INT( a ) \
(FT_Int)( (FT_UInt)0 - (FT_UInt)(a) )
#define ADD_LONG( a, b ) \
(FT_Long)( (FT_ULong)(a) + (FT_ULong)(b) )
#define SUB_LONG( a, b ) \
(FT_Long)( (FT_ULong)(a) - (FT_ULong)(b) )
#define MUL_LONG( a, b ) \
(FT_Long)( (FT_ULong)(a) * (FT_ULong)(b) )
#define NEG_LONG( a ) \
(FT_Long)( (FT_ULong)0 - (FT_ULong)(a) )
#define ADD_INT32( a, b ) \
(FT_Int32)( (FT_UInt32)(a) + (FT_UInt32)(b) )
#define SUB_INT32( a, b ) \
(FT_Int32)( (FT_UInt32)(a) - (FT_UInt32)(b) )
#define MUL_INT32( a, b ) \
(FT_Int32)( (FT_UInt32)(a) * (FT_UInt32)(b) )
#define NEG_INT32( a ) \
(FT_Int32)( (FT_UInt32)0 - (FT_UInt32)(a) )
#ifdef FT_INT64
#define ADD_INT64( a, b ) \
(FT_Int64)( (FT_UInt64)(a) + (FT_UInt64)(b) )
#define SUB_INT64( a, b ) \
(FT_Int64)( (FT_UInt64)(a) - (FT_UInt64)(b) )
#define MUL_INT64( a, b ) \
(FT_Int64)( (FT_UInt64)(a) * (FT_UInt64)(b) )
#define NEG_INT64( a ) \
(FT_Int64)( (FT_UInt64)0 - (FT_UInt64)(a) )
#endif /* FT_INT64 */
FT_END_HEADER
#endif /* FTCALC_H_ */
/* END */
|