1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2024, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file quaternion.inl
* @brief Inline implementation of aiQuaterniont<TReal> operators
*/
#pragma once
#ifndef AI_QUATERNION_INL_INC
#define AI_QUATERNION_INL_INC
#ifdef __GNUC__
# pragma GCC system_header
#endif
#ifdef __cplusplus
#include <assimp/quaternion.h>
#include <cmath>
// ------------------------------------------------------------------------------------------------
/** Transformation of a quaternion by a 4x4 matrix */
template <typename TReal>
AI_FORCE_INLINE
aiQuaterniont<TReal> operator * (const aiMatrix4x4t<TReal>& pMatrix, const aiQuaterniont<TReal>& pQuaternion) {
aiQuaterniont<TReal> res;
res.x = pMatrix.a1 * pQuaternion.x + pMatrix.a2 * pQuaternion.y + pMatrix.a3 * pQuaternion.z + pMatrix.a4 * pQuaternion.w;
res.y = pMatrix.b1 * pQuaternion.x + pMatrix.b2 * pQuaternion.y + pMatrix.b3 * pQuaternion.z + pMatrix.b4 * pQuaternion.w;
res.z = pMatrix.c1 * pQuaternion.x + pMatrix.c2 * pQuaternion.y + pMatrix.c3 * pQuaternion.z + pMatrix.c4 * pQuaternion.w;
res.w = pMatrix.d1 * pQuaternion.x + pMatrix.d2 * pQuaternion.y + pMatrix.d3 * pQuaternion.z + pMatrix.d4 * pQuaternion.w;
return res;
}
// ---------------------------------------------------------------------------
template<typename TReal>
bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const
{
return x == o.x && y == o.y && z == o.z && w == o.w;
}
// ---------------------------------------------------------------------------
template<typename TReal>
bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const
{
return !(*this == o);
}
// ------------------------------------------------------------------------------------------------
template <typename TReal>
AI_FORCE_INLINE
aiQuaterniont<TReal>& aiQuaterniont<TReal>::operator *= (const aiMatrix4x4t<TReal>& mat){
return (*this = mat * (*this));
}
// ------------------------------------------------------------------------------------------------
// ---------------------------------------------------------------------------
template<typename TReal>
inline bool aiQuaterniont<TReal>::Equal(const aiQuaterniont& o, TReal epsilon) const {
return
std::abs(x - o.x) <= epsilon &&
std::abs(y - o.y) <= epsilon &&
std::abs(z - o.z) <= epsilon &&
std::abs(w - o.w) <= epsilon;
}
// ---------------------------------------------------------------------------
// Constructs a quaternion from a rotation matrix
template<typename TReal>
inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
{
TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
// large enough
if( t > static_cast<TReal>(0))
{
TReal s = std::sqrt(1 + t) * static_cast<TReal>(2.0);
x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
w = static_cast<TReal>(0.25) * s;
} // else we have to check several cases
else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
{
// Column 0:
TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0);
x = static_cast<TReal>(0.25) * s;
y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
}
else if( pRotMatrix.b2 > pRotMatrix.c3)
{
// Column 1:
TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0);
x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
y = static_cast<TReal>(0.25) * s;
z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
} else
{
// Column 2:
TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0);
x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
z = static_cast<TReal>(0.25) * s;
w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
}
}
// ---------------------------------------------------------------------------
// Construction from euler angles
template<typename TReal>
inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll )
{
const TReal fSinPitch(std::sin(fPitch*static_cast<TReal>(0.5)));
const TReal fCosPitch(std::cos(fPitch*static_cast<TReal>(0.5)));
const TReal fSinYaw(std::sin(fYaw*static_cast<TReal>(0.5)));
const TReal fCosYaw(std::cos(fYaw*static_cast<TReal>(0.5)));
const TReal fSinRoll(std::sin(fRoll*static_cast<TReal>(0.5)));
const TReal fCosRoll(std::cos(fRoll*static_cast<TReal>(0.5)));
const TReal fCosPitchCosYaw(fCosPitch*fCosYaw);
const TReal fSinPitchSinYaw(fSinPitch*fSinYaw);
x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
}
// ---------------------------------------------------------------------------
// Returns a matrix representation of the quaternion
template<typename TReal>
inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const
{
aiMatrix3x3t<TReal> resMatrix;
resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z);
resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w);
resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w);
resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w);
resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z);
resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w);
resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w);
resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w);
resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y);
return resMatrix;
}
// ---------------------------------------------------------------------------
// Construction from an axis-angle pair
template<typename TReal>
inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle)
{
axis.Normalize();
const TReal sin_a = std::sin( angle / 2 );
const TReal cos_a = std::cos( angle / 2 );
x = axis.x * sin_a;
y = axis.y * sin_a;
z = axis.z * sin_a;
w = cos_a;
}
// ---------------------------------------------------------------------------
// Construction from am existing, normalized quaternion
template<typename TReal>
inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized)
{
x = normalized.x;
y = normalized.y;
z = normalized.z;
const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z);
if (t < static_cast<TReal>(0.0)) {
w = static_cast<TReal>(0.0);
}
else w = std::sqrt (t);
}
// ---------------------------------------------------------------------------
// Performs a spherical interpolation between two quaternions
// Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
// Congrats, gmtl!
template<typename TReal>
inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor)
{
// calc cosine theta
TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
// adjust signs (if necessary)
aiQuaterniont end = pEnd;
if( cosom < static_cast<TReal>(0.0))
{
cosom = -cosom;
end.x = -end.x; // Reverse all signs
end.y = -end.y;
end.z = -end.z;
end.w = -end.w;
}
// Calculate coefficients
TReal sclp, sclq;
if ((static_cast<TReal>(1.0) - cosom) > ai_epsilon) // 0.0001 -> some epsillon
{
// Standard case (slerp)
TReal omega, sinom;
omega = std::acos( cosom); // extract theta from dot product's cos theta
sinom = std::sin( omega);
sclp = std::sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom;
sclq = std::sin( pFactor * omega) / sinom;
} else
{
// Very close, do linear interp (because it's faster)
sclp = static_cast<TReal>(1.0) - pFactor;
sclq = pFactor;
}
pOut.x = sclp * pStart.x + sclq * end.x;
pOut.y = sclp * pStart.y + sclq * end.y;
pOut.z = sclp * pStart.z + sclq * end.z;
pOut.w = sclp * pStart.w + sclq * end.w;
}
// ---------------------------------------------------------------------------
template<typename TReal>
inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize()
{
// compute the magnitude and divide through it
const TReal mag = std::sqrt(x*x + y*y + z*z + w*w);
if (mag)
{
const TReal invMag = static_cast<TReal>(1.0)/mag;
x *= invMag;
y *= invMag;
z *= invMag;
w *= invMag;
}
return *this;
}
// ---------------------------------------------------------------------------
template<typename TReal>
inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const
{
return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z,
w*t.x + x*t.w + y*t.z - z*t.y,
w*t.y + y*t.w + z*t.x - x*t.z,
w*t.z + z*t.w + x*t.y - y*t.x);
}
// ---------------------------------------------------------------------------
template<typename TReal>
inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate ()
{
x = -x;
y = -y;
z = -z;
return *this;
}
// ---------------------------------------------------------------------------
template<typename TReal>
inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v) const
{
aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
qinv.Conjugate();
q = q*q2*qinv;
return aiVector3t<TReal>(q.x,q.y,q.z);
}
#endif
#endif // AI_QUATERNION_INL_INC
|