summaryrefslogtreecommitdiff
path: root/source/main.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'source/main.cpp')
-rw-r--r--source/main.cpp1083
1 files changed, 1083 insertions, 0 deletions
diff --git a/source/main.cpp b/source/main.cpp
new file mode 100644
index 0000000..b7597fe
--- /dev/null
+++ b/source/main.cpp
@@ -0,0 +1,1083 @@
+#include <stdio.h>
+#include <SDL2/SDL.h>
+#include <glad/glad.h>
+
+#define STB_IMAGE_IMPLEMENTATION
+#include "stb_image.h"
+
+/* @lookup:
+* - I do not understand how floating point numbers work, so I should probably look into that.
+* - The normal matrix calculation in the fragment shader for the object affected by light has been mainly copied.
+* I have tried to understand the formula, and whilst it made some sense, it is not fully clear to me, and I cannot picture it yet.
+* Revisit the derivation for the normal matrix some time in the future.
+* - Lookup the derivation of the formula for reflecting a vector about a normal. I am doing that for specular lighting, but the learnopengl tutorial
+* just uses a glsl reflect formula, and at the time of writing it is also very late so I am not in the mood or position to look into it at present.
+* - One of the things I have observed with specular lights is that the circle/specular highlight follows the camera (me) when I move. I would like to figure
+* out a way by which this does not happen and it remains fixed on the object, at the angle at which it hits. All of this will be made complicated by the fact
+* that ofcourse everything is actually happening from the cameras' perspective. I would still love to figure this out.
+*/
+
+/* @todo:
+ * - Switch to using clang on windows (for simplicity)
+*/
+
+typedef uint8_t u8;
+typedef uint16_t u16;
+typedef uint32_t u32;
+typedef uint64_t u64;
+
+typedef int8_t s8;
+typedef int16_t s16;
+typedef int32_t s32;
+typedef int64_t s64;
+
+typedef float r32;
+typedef double r64;
+
+typedef u8 b8;
+
+// =========== Shader Loading =============
+
+unsigned int gl_create_vertex_shader(char* vertex_shader_source)
+{
+ unsigned int vertex_shader = glCreateShader(GL_VERTEX_SHADER);
+ glShaderSource(vertex_shader, 1, &vertex_shader_source, NULL);
+ glCompileShader(vertex_shader);
+
+ int success;
+ char info_log[512];
+ glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &success);
+ if (!success)
+ {
+ glGetShaderInfoLog(vertex_shader, 512, NULL, info_log);
+ printf("================================\n");
+ printf("vertex shader compilation failed:\n%s\n", info_log);
+ }
+
+ return vertex_shader;
+}
+
+unsigned int gl_create_fragment_shader(char* fragment_shader_source)
+{
+ unsigned int fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
+ glShaderSource(fragment_shader, 1, &fragment_shader_source, NULL);
+ glCompileShader(fragment_shader);
+
+ int success;
+ char info_log[512];
+ glGetShaderiv(fragment_shader, GL_COMPILE_STATUS, &success);
+ if (!success)
+ {
+ glGetShaderInfoLog(fragment_shader, 512, NULL, info_log);
+ printf("================================\n");
+ printf("fragment shader compilation failed:\n%s\n", info_log);
+ }
+
+ return fragment_shader;
+}
+
+unsigned int gl_create_shader_program(unsigned int vertex_shader, unsigned int fragment_shader)
+{
+ unsigned int shader_program = glCreateProgram();
+
+ glAttachShader(shader_program, vertex_shader);
+ glAttachShader(shader_program, fragment_shader);
+ glLinkProgram(shader_program);
+
+ int success;
+ char info_log[512];
+ glGetProgramiv(shader_program, GL_LINK_STATUS, &success);
+ if (!success)
+ {
+ glGetProgramInfoLog(shader_program, 512, NULL, info_log);
+ printf("================================\n");
+ printf("shader program linking failed:\n%s\n", info_log);
+ }
+
+ glDeleteShader(vertex_shader);
+ glDeleteShader(fragment_shader);
+
+ return shader_program;
+}
+
+int platform_read_file()
+{
+ return 0;
+}
+
+int platform_write_file()
+{
+ return 0;
+}
+
+// =========================================================== MATH ==================================================
+#define PI 3.14159265358979323846264338327950288f
+#define Square(x) ((x)*(x))
+#define To_Radian(x) ((x) * PI / 180.0f)
+#define To_Degree(x) ((x) * 180.0f / PI)
+
+r32 clampf(r32 x, r32 bottom, r32 top)
+{
+ if (x < bottom)
+ {
+ x = bottom;
+ }
+ else if (x > top)
+ {
+ x = top;
+ }
+
+ return x;
+}
+
+// ==== Vector Math ====
+
+union Vec3 {
+ struct {
+ r32 x;
+ r32 y;
+ r32 z;
+ };
+ r32 data[3];
+};
+
+union Vec4 {
+ struct {
+ r32 x;
+ r32 y;
+ r32 z;
+ r32 w;
+ };
+ r32 data[4];
+};
+
+union Mat4 {
+ Vec4 xyzw[4];
+ r32 data[4][4];
+ r32 buffer[16];
+};
+
+// ========================================================== Vec3 ==========================================================
+
+Vec3 init3v(r32 x, r32 y, r32 z)
+{
+ Vec3 res;
+ res.x = x;
+ res.y = y;
+ res.z = z;
+
+ return res;
+}
+
+Vec3 scaler_add3v(Vec3 vec, r32 scaler)
+{
+ Vec3 res;
+ res.x = vec.x + scaler;
+ res.y = vec.y + scaler;
+ res.z = vec.z + scaler;
+
+ return res;
+}
+
+Vec3 scaler_multiply3v(Vec3 vec, r32 scaler)
+{
+ Vec3 res;
+ res.x = vec.x * scaler;
+ res.y = vec.y * scaler;
+ res.z = vec.z * scaler;
+
+ return res;
+}
+
+Vec3 scaler_divide3v(Vec3 vec, r32 scaler)
+{
+ Vec3 res;
+ res.x = vec.x / scaler;
+ res.y = vec.y / scaler;
+ res.z = vec.z / scaler;
+
+ return res;
+}
+
+
+Vec3 add3v(Vec3 a, Vec3 b)
+{
+ Vec3 res;
+ res.x = a.x + b.x;
+ res.y = a.y + b.y;
+ res.z = a.z + b.z;
+
+ return res;
+}
+
+Vec3 subtract3v(Vec3 a, Vec3 b)
+{
+ Vec3 res;
+ res.x = a.x - b.x;
+ res.y = a.y - b.y;
+ res.z = a.z - b.z;
+
+ return res;
+}
+
+r32 dot_multiply3v(Vec3 a, Vec3 b)
+{
+ r32 x = a.x * b.x;
+ r32 y = a.y * b.y;
+ r32 z = a.z * b.z;
+
+ r32 res = x + y + z;
+
+ return res;
+}
+
+r32 magnitude3v(Vec3 vec)
+{
+ r32 res = sqrtf(Square(vec.x) + Square(vec.y) + Square(vec.z));
+ return res;
+}
+
+Vec3 normalize3v(Vec3 vec)
+{
+ r32 magnitude = magnitude3v(vec);
+ Vec3 res = scaler_divide3v(vec, magnitude);
+ return res;
+}
+
+#ifndef FUN_CALCS
+r32 angle3v(Vec3 a, Vec3 b)
+{
+ Vec3 a_norm = normalize3v(a);
+ Vec3 b_norm = normalize3v(b);
+
+ r32 dot_product = dot_multiply3v(a_norm, b_norm);
+ r32 res = acosf(dot_product);
+
+ return res;
+}
+#endif
+
+Vec3 cross_multiply3v(Vec3 a, Vec3 b)
+{
+ Vec3 res;
+ res.x = (a.y * b.z) - (a.z * b.y);
+ res.y = (a.z * b.x) - (a.x * b.z);
+ res.z = (a.x * b.y) - (a.y * b.x);
+
+ return res;
+}
+
+// ============================================== Vec4, Mat4 ==============================================
+
+Vec4 init4v(r32 x, r32 y, r32 z, r32 w)
+{
+ Vec4 res;
+ res.x = x;
+ res.y = y;
+ res.z = z;
+ res.w = w;
+
+ return res;
+}
+
+Mat4 init_value4m(r32 value)
+{
+ Mat4 res = {0};
+ res.data[0][0] = value;
+ res.data[1][1] = value;
+ res.data[2][2] = value;
+ res.data[3][3] = value;
+
+ return res;
+}
+
+// @note: These operations are just defined and not expressed. They are kept here for completeness sake BUT
+// since I have not had to do anything related to these, I have not created them.
+Vec4 scaler_add4v(Vec4 vec, r32 scaler);
+Vec4 scaler_subtract4v(Vec4 vec, r32 scaler);
+Vec4 scaler_multiply4v(Vec4 vec, r32 scaler);
+Vec4 scaler_divide4v(Vec4 vec, r32 scaler);
+Vec4 add4v(Vec4 a, Vec4 b);
+Vec4 subtract4v(Vec4 a, Vec4 b);
+Vec4 dot_multiply4v(Vec4 a, Vec4 b);
+
+Mat4 add4m(Mat4 a, Mat4 b)
+{
+ Mat4 res;
+ // row 0
+ res.data[0][0] = a.data[0][0] + b.data[0][0];
+ res.data[0][1] = a.data[0][1] + b.data[0][1];
+ res.data[0][2] = a.data[0][2] + b.data[0][2];
+ res.data[0][3] = a.data[0][3] + b.data[0][3];
+ // row 1
+ res.data[1][0] = a.data[1][0] + b.data[1][0];
+ res.data[1][1] = a.data[1][1] + b.data[1][1];
+ res.data[1][2] = a.data[1][2] + b.data[1][2];
+ res.data[1][3] = a.data[1][3] + b.data[1][3];
+ // row 2
+ res.data[2][0] = a.data[2][0] + b.data[2][0];
+ res.data[2][1] = a.data[2][1] + b.data[2][1];
+ res.data[2][2] = a.data[2][2] + b.data[2][2];
+ res.data[2][3] = a.data[2][3] + b.data[2][3];
+ // row 3
+ res.data[3][0] = a.data[3][0] + b.data[3][0];
+ res.data[3][1] = a.data[3][1] + b.data[3][1];
+ res.data[3][2] = a.data[3][2] + b.data[3][2];
+ res.data[3][3] = a.data[3][3] + b.data[3][3];
+
+ return res;
+}
+
+Mat4 subtract4m(Mat4 a, Mat4 b)
+{
+ Mat4 res;
+ // row 0
+ res.data[0][0] = a.data[0][0] - b.data[0][0];
+ res.data[0][1] = a.data[0][1] - b.data[0][1];
+ res.data[0][2] = a.data[0][2] - b.data[0][2];
+ res.data[0][3] = a.data[0][3] - b.data[0][3];
+ // row 1
+ res.data[1][0] = a.data[1][0] - b.data[1][0];
+ res.data[1][1] = a.data[1][1] - b.data[1][1];
+ res.data[1][2] = a.data[1][2] - b.data[1][2];
+ res.data[1][3] = a.data[1][3] - b.data[1][3];
+ // row 2
+ res.data[2][0] = a.data[2][0] - b.data[2][0];
+ res.data[2][1] = a.data[2][1] - b.data[2][1];
+ res.data[2][2] = a.data[2][2] - b.data[2][2];
+ res.data[2][3] = a.data[2][3] - b.data[2][3];
+ // row 3
+ res.data[3][0] = a.data[3][0] - b.data[3][0];
+ res.data[3][1] = a.data[3][1] - b.data[3][1];
+ res.data[3][2] = a.data[3][2] - b.data[3][2];
+ res.data[3][3] = a.data[3][3] - b.data[3][3];
+
+ return res;
+}
+
+Vec4 multiply4vm(Vec4 vec, Mat4 mat)
+{
+ /*
+ * @note: Incase I get confused about this in the future.
+ *
+ * Everything is row-order, which means that things in memory are laid out row first. So with a sample matrix
+ * we have this order in memory: r1c1 r1c2 r1c3 r1c4 r2c1 ... (r = row, c = column). The same holds true for
+ * vectors. (maybe move this explanation to the top)
+ *
+ * Now, multiply4vm will multiply a vector with a matrix. Conventionally that does not make any sense as
+ * a vector is usually 4x1 and a matrix ix 4x4.
+ * What this function considers a vector, while it is a vector, it is infact a row from a matrix, which
+ * means that the vector is 1x4 and the matrix is 4x4.
+ *
+ * The function is meant to supplement the matrix multiplication process to alleviate the multiple lines of code
+ * we have to write when multiplying the row of a left matrix to each column of the right matrix
+ */
+ Vec4 res = { 0 };
+ res.x = (mat.data[0][0] * vec.x) + (mat.data[0][1] * vec.y) + (mat.data[0][2] * vec.z) + (mat.data[0][3] * vec.w);
+ res.y = (mat.data[1][0] * vec.x) + (mat.data[1][1] * vec.y) + (mat.data[1][2] * vec.z) + (mat.data[1][3] * vec.w);
+ res.z = (mat.data[2][0] * vec.x) + (mat.data[2][1] * vec.y) + (mat.data[2][2] * vec.z) + (mat.data[2][3] * vec.w);
+ res.w = (mat.data[3][0] * vec.x) + (mat.data[3][1] * vec.y) + (mat.data[3][2] * vec.z) + (mat.data[3][3] * vec.w);
+
+ return res;
+}
+
+Mat4 multiply4m(Mat4 a, Mat4 b)
+{
+ Mat4 res = { 0 };
+
+ res.xyzw[0] = multiply4vm(a.xyzw[0], b);
+ res.xyzw[1] = multiply4vm(a.xyzw[1], b);
+ res.xyzw[2] = multiply4vm(a.xyzw[2], b);
+ res.xyzw[3] = multiply4vm(a.xyzw[3], b);
+
+ return res;
+}
+
+// ==== Matrix Transformation ====
+
+Mat4 scaling_matrix4m(r32 x, r32 y, r32 z) // generates a 4x4 scaling matrix for scaling each of the x,y,z axis
+{
+ Mat4 res = init_value4m(1.0f);
+ res.data[0][0] = x;
+ res.data[1][1] = y;
+ res.data[2][2] = z;
+
+ return res;
+}
+
+Mat4 translation_matrix4m(r32 x, r32 y, r32 z) // generates a 4x4 translation matrix for translation along each of the x,y,z axis
+{
+ Mat4 res = init_value4m(1.0f);
+ res.data[0][3] = x;
+ res.data[1][3] = y;
+ res.data[2][3] = z;
+
+ return res;
+}
+
+Mat4 rotation_matrix4m(r32 angle_radians, Vec3 axis) // generates a 4x4 rotation matrix for rotation along each of the x,y,z axis
+{
+ Mat4 res = init_value4m(1.0f);
+ axis = normalize3v(axis);
+
+ r32 cos_theta = cosf(angle_radians);
+ r32 sin_theta = sinf(angle_radians);
+ r32 cos_value = 1.0f - cos_theta;
+
+ res.data[0][0] = (axis.x * axis.x * cos_value) + cos_theta;
+ res.data[0][1] = (axis.x * axis.y * cos_value) + (axis.z * sin_theta);
+ res.data[0][2] = (axis.x * axis.z * cos_value) - (axis.y * sin_theta);
+
+ res.data[1][0] = (axis.x * axis.y * cos_value) - (axis.z * sin_theta);
+ res.data[1][1] = (axis.y * axis.y * cos_value) + cos_theta;
+ res.data[1][2] = (axis.y * axis.z * cos_value) + (axis.x * sin_theta);
+
+ res.data[2][0] = (axis.x * axis.z * cos_value) + (axis.y * sin_theta);
+ res.data[2][1] = (axis.z * axis.y * cos_value) - (axis.x * sin_theta);
+ res.data[2][2] = (axis.z * axis.z * cos_value) + cos_theta;
+
+ return res;
+}
+
+Mat4 perspective_projection_matrix4m(r32 left, r32 right, r32 bottom, r32 top, r32 near, r32 far)
+{
+ Mat4 res = { 0 };
+
+ res.data[0][0] = (2.0 * near)/(right - left);
+ res.data[0][2] = (right + left)/(right - left);
+
+ res.data[1][1] = (2.0 * near)/(top - bottom);
+ res.data[1][2] = (top + bottom)/(top - bottom);
+
+ res.data[2][2] = -(far + near)/(far - near);
+ res.data[2][3] = -2.0*far*near/(far - near);
+
+ res.data[3][2] = -1.0;
+
+ return res;
+}
+
+Mat4 perspective4m(r32 fov, r32 aspect_ratio, r32 near, r32 far)
+{
+ r32 cotangent = 1.0f / tanf(fov / 2.0f);
+
+ Mat4 res = { 0 };
+
+ res.data[0][0] = cotangent / aspect_ratio;
+
+ res.data[1][1] = cotangent;
+
+ res.data[2][2] = -(far + near) / (far - near);
+ res.data[2][3] = -2.0 * far * near / (far - near);
+
+ res.data[3][2] = -1.0;
+
+ return res;
+}
+
+Mat4 lookat4m(Vec3 up, Vec3 forward, Vec3 right, Vec3 position)
+{
+ /*
+ * @note: The construction of the lookat matrix is not obvious. For that reason here is the supplemental matrial I have used to understand
+ * things while I maintain my elementary understanding of linear algebra.
+ * 1. This youtube video (https://www.youtube.com/watch?v=3ZmqJb7J5wE) helped me understand why we invert matrices.
+ * It is because, we are moving from the position matrix which is a global to the view matrix which
+ * is a local. It won't be very clear from this illustration alone, so you would be best served watching the video and recollecting and understanding from there.
+ * 2. This article (https://twodee.org/blog/17560) derives (or rather shows), in a very shallow way how we get to the look at matrix.
+ */
+ Mat4 res = init_value4m(1.0);
+ res.xyzw[0] = Vec4{ right.x, right.y, right.z, -dot_multiply3v(right, position) };
+ res.xyzw[1] = Vec4{ up.x, up.y, up.z, -dot_multiply3v(up, position) };
+ res.xyzw[2] = Vec4{ forward.x, forward.y, forward.z, -dot_multiply3v(forward, position) };
+ res.xyzw[3] = Vec4{ 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return res;
+}
+
+Mat4 camera_create4m(Vec3 camera_pos, Vec3 camera_look, Vec3 camera_up)
+{
+ // @note: We do this because this allows the camera to have the axis it looks at
+ // inwards be the +z axis.
+ // If we did not do this, then the inward axis the camera looks at would be negative.
+ // I am still learning from learnopengl.com but I imagine that this was done for conveniences' sake.
+ Vec3 camera_forward_dir = normalize3v(subtract3v(camera_pos, camera_look));
+ Vec3 camera_right_dir = normalize3v(cross_multiply3v(camera_up, camera_forward_dir));
+ Vec3 camera_up_dir = normalize3v(cross_multiply3v(camera_forward_dir, camera_right_dir));
+
+ Mat4 res = lookat4m(camera_up_dir, camera_forward_dir, camera_right_dir, camera_pos);
+
+ return res;
+}
+
+Vec3 camera_look_around(r32 angle_pitch, r32 angle_yaw)
+{
+ Vec3 camera_look = {0.0};
+ camera_look.x = cosf(angle_yaw) * cosf(angle_pitch);
+ camera_look.y = sinf(angle_pitch);
+ camera_look.z = sinf(angle_yaw) * cosf(angle_pitch);
+ camera_look = normalize3v(camera_look);
+
+ return camera_look;
+}
+
+int main(int argc, char* argv[])
+{
+ int width = 1024;
+ int height = 768;
+
+ if (SDL_Init(SDL_INIT_VIDEO) != 0)
+ {
+ printf("Error initialising SDL2: %s\n", SDL_GetError());
+ return 0;
+ };
+
+ // set opengl version and profile
+ SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
+ SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 3);
+ SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
+
+ // initialise window with opengl flag
+ SDL_Window* window = SDL_CreateWindow("SDL Test",
+ 50,
+ 50,
+ width,
+ height,
+ SDL_WINDOW_OPENGL);
+
+ SDL_SetRelativeMouseMode(SDL_TRUE);
+
+ // create an opengl context
+ SDL_GLContext context = SDL_GL_CreateContext(window);
+ if (!context)
+ {
+ printf("OpenGL context creation failed: %s\n", SDL_GetError());
+ return -1;
+ }
+
+
+ // load glad
+ if (!gladLoadGLLoader((GLADloadproc)SDL_GL_GetProcAddress)) {
+ printf("Failed to initialize Glad\n");
+ return 1;
+ }
+
+ // filesystem playground stuff
+ size_t read_count;
+ char* vertex_source = (char*)SDL_LoadFile("./source/shaders/light_subject.vs.glsl", &read_count);
+ char* fragment_source = (char*)SDL_LoadFile("./source/shaders/light_subject.fs.glsl", &read_count);
+ char* light_vertex_source = (char*)SDL_LoadFile("./source/shaders/light_source.vs.glsl", &read_count);
+ char* light_fragment_source = (char*)SDL_LoadFile("./source/shaders/light_source.fs.glsl", &read_count);
+
+ GLuint vertex_shader = gl_create_vertex_shader(vertex_source);
+ GLuint fragment_shader = gl_create_fragment_shader(fragment_source);
+ GLuint shader_program = gl_create_shader_program(vertex_shader, fragment_shader);
+ GLuint light_vs = gl_create_vertex_shader(light_vertex_source);
+ GLuint light_fs = gl_create_fragment_shader(light_fragment_source);
+ GLuint light_sp = gl_create_shader_program(light_vs, light_fs);
+ printf("Successfully compiled shaders.\n");
+
+ GLfloat rect_vertices[] = {
+ // Position // Color // Texture
+ -0.5f, -0.5f, 0.0f, 0.6f, 0.3f, 0.3f, 0.0f, 0.0f, // bottom left
+ 0.5f, -0.5f, 0.0f, 0.6f, 0.5f, 0.5f, 1.0f, 0.0f, // bottom right
+ -0.5f, 0.5f, 0.0f, 0.4f, 0.3f, 0.2f, 0.0f, 1.0f, // top left
+ 0.5f, 0.5f, 0.0f, 0.4f, 0.5f, 0.6f, 1.0f, 1.0f // top right
+ };
+
+ unsigned int rect_indices[] = {
+ 0, 1, 2,
+ 2, 1, 3
+ };
+
+ r32 cube_normal_vertices[] = {
+ -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
+ 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
+ 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
+ 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
+ -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
+ -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
+
+ -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, // this is the front side as seen from the camera starting at > 0.0f
+ 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
+ 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
+ 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
+ -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
+ -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
+
+ -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
+ -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
+ -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
+ -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
+ -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
+ -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
+
+ 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
+ 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
+ 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
+ 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
+ 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
+
+ -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
+ 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
+ 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
+ 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
+ -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
+ -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
+
+ -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
+ 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
+ -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
+ -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f
+ };
+
+ r32 cube_vertices[] = {
+ -0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
+ 0.5f, -0.5f, -0.5f, 1.0f, 0.0f,
+ 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
+ 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
+ -0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
+ -0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
+
+ -0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
+ 0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
+ 0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
+ -0.5f, 0.5f, 0.5f, 0.0f, 1.0f,
+ -0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
+
+ -0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
+ -0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
+ -0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
+ -0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
+ -0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
+ -0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
+
+ 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
+ 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
+ 0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
+ 0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
+ 0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
+
+ -0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
+ 0.5f, -0.5f, -0.5f, 1.0f, 1.0f,
+ 0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
+ 0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
+ -0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
+ -0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
+
+ -0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
+ 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
+ 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
+ 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
+ -0.5f, 0.5f, 0.5f, 0.0f, 0.0f,
+ -0.5f, 0.5f, -0.5f, 0.0f, 1.0f
+ };
+
+ GLuint light_VBO, light_VAO;
+ {
+ glGenVertexArrays(1, &light_VAO);
+ glGenBuffers(1, &light_VBO);
+
+ glBindVertexArray(light_VAO);
+
+ glBindBuffer(GL_ARRAY_BUFFER, light_VBO);
+ glBufferData(GL_ARRAY_BUFFER, sizeof(cube_vertices), cube_vertices, GL_STATIC_DRAW);
+
+ glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
+ glEnableVertexAttribArray(0);
+
+ glBindVertexArray(0);
+ glBindBuffer(GL_ARRAY_BUFFER, 0);
+ }
+
+ GLuint VBO, VAO, EBO, container_texture, smiling_texture;
+ {
+ glGenVertexArrays(1, &VAO);
+ glGenBuffers(1, &VBO);
+ //glGenBuffers(1, &EBO);
+
+ glBindVertexArray(VAO);
+
+
+ glBindBuffer(GL_ARRAY_BUFFER, VBO);
+ glBufferData(GL_ARRAY_BUFFER, sizeof(cube_normal_vertices), cube_normal_vertices, GL_STATIC_DRAW);
+
+ //glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
+ //glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(rect_indices), rect_indices, GL_STATIC_DRAW);
+
+ // Position Attribute
+ glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
+ glEnableVertexAttribArray(0);
+
+ // Color Attribute
+ //glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
+ //glEnableVertexAttribArray(1);
+
+ // Texture Attributes
+ //glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
+ //glEnableVertexAttribArray(1);
+
+ // normal attribute
+ glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
+ glEnableVertexAttribArray(1);
+
+ int img_width, img_height, img_nrChannels;
+
+ // ==== Texture 1 ====
+ glGenTextures(1, &smiling_texture);
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, smiling_texture);
+
+ const char* smiling_path = "assets/smiling.png";
+ stbi_set_flip_vertically_on_load(1);
+ unsigned char* smiling_data = stbi_load(smiling_path, &img_width, &img_height, &img_nrChannels, 0);
+
+ // Texture Properties
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
+
+ // Texture Data
+ if (smiling_data)
+ {
+ glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, img_width, img_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, smiling_data);
+ glGenerateMipmap(GL_TEXTURE_2D);
+ }
+ else
+ {
+ printf("Error! Failed to load image from `%s`\n", smiling_path);
+ }
+ stbi_image_free(smiling_data);
+
+ // ==== Texture 2 ====
+ glGenTextures(1, &container_texture);
+ glActiveTexture(GL_TEXTURE1);
+ glBindTexture(GL_TEXTURE_2D, container_texture);
+ const char* container_path = "assets/container.jpg";
+ unsigned char* container_data = stbi_load(container_path, &img_width, &img_height, &img_nrChannels, 0);
+
+ // Texture Properties
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
+
+ // Texture Data
+ if (container_data)
+ {
+ glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img_width, img_height, 0, GL_RGB, GL_UNSIGNED_BYTE, container_data);
+ glGenerateMipmap(GL_TEXTURE_2D);
+ }
+ else
+ {
+ printf("Error! Failed to load image from `%s`\n", container_path);
+ }
+ stbi_image_free(container_data);
+
+ glBindVertexArray(0);
+ glBindBuffer(GL_ARRAY_BUFFER, 0);
+ //glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
+ glBindTexture(GL_TEXTURE_2D, 0);
+ }
+
+ glUseProgram(shader_program);
+ Vec3 ambient_color = Vec3{ 0.0, 0.1, 0.6 };
+ Vec3 diffuse_color = Vec3{ 0.0, 0.50980392, 0.50980392};
+ Vec3 specular_color = Vec3{ 0.50196078, 0.50196078, 0.50196078};
+ Vec3 light_color = Vec3{ 1.0, 1.0, 1.0};
+ r32 specular_shine_factor = 128.0 * 0.25;
+
+ // material uniforms
+ int mat_ambient_loc = glGetUniformLocation(shader_program, "material.ambient");
+ glUniform3fv(mat_ambient_loc, 1, ambient_color.data);
+
+ int mat_diffuse_loc = glGetUniformLocation(shader_program, "material.diffuse");
+ glUniform3fv(mat_diffuse_loc, 1, diffuse_color.data);
+
+ int mat_specular_loc = glGetUniformLocation(shader_program, "material.specular");
+ glUniform3fv(mat_specular_loc, 1, specular_color.data);
+
+ int shine_factor_loc = glGetUniformLocation(shader_program, "material.shininess");
+ glUniform1f(shine_factor_loc, specular_shine_factor);
+
+ // light uniforms
+ Vec3 light_location = Vec3{ 0.0, 0.0, 3.0 };
+ Vec3 light_ambient = Vec3{ 0.2, 0.2, 0.2 };
+ Vec3 light_diffuse = Vec3{ 0.5, 0.5, 0.5 };
+ Vec3 light_specular = Vec3{ 1.0, 1.0, 1.0};
+
+ int light_ambient_loc = glGetUniformLocation(shader_program, "light.ambient");
+ glUniform3fv(light_ambient_loc, 1, light_ambient.data);
+
+ int light_diffuse_loc = glGetUniformLocation(shader_program, "light.diffuse");
+ glUniform3fv(light_diffuse_loc, 1, light_diffuse.data);
+
+ int light_specular_loc = glGetUniformLocation(shader_program, "light.specular");
+ glUniform3fv(light_specular_loc, 1, light_diffuse.data);
+
+ int light_pos_loc = glGetUniformLocation(shader_program, "light.position");
+ glUniform3fv(light_pos_loc, 1, light_location.data);
+
+ // texture uniforms
+ int smiling_loc = glGetUniformLocation(shader_program, "smilingTexture");
+ glUniform1i(smiling_loc, 0);
+
+ int container_loc = glGetUniformLocation(shader_program, "containerTexture");
+ glUniform1i(container_loc, 1);
+
+ int light_uniform_loc = glGetUniformLocation(shader_program, "lightColor");
+ glUniform3fv(light_uniform_loc, 1, light_color.data);
+
+
+ int camera_pos_loc = glGetUniformLocation(shader_program, "cameraPosition");
+
+ // objects
+ Vec3 model_translations[] = {
+ Vec3{ 0.0, 0.0, 0.0},
+ Vec3{ -5.0, -1.0, -4.0},
+ Vec3{ 5.0, 2.0, -4.0},
+ Vec3{ -3.0, 5.0, -6.0},
+ Vec3{ 3.0, -7.0, -6.0},
+ };
+
+ r32 FOV = 90.0;
+ r32 time_curr;
+ r32 time_prev = SDL_GetTicks64() / 100.0;
+ uint32_t model_loc = glGetUniformLocation(shader_program, "Model");
+
+ // camera stuff
+ Vec3 camera_pos = Vec3{ 0.0, 5.0, 10.0f};
+ Vec3 preset_up_dir = Vec3{ 0.0, 1.0, 0.0 };
+
+ r32 angle_yaw, angle_pitch, angle_roll;
+ angle_pitch = (r32)To_Radian(0.0f);
+ angle_yaw = (r32)-To_Radian(90.0f);
+
+ Vec3 camera_look = camera_look_around(angle_pitch, angle_yaw);
+
+ // @todo: remove this, I dont like this and think that this is unnecessary
+ Vec3 camera_look_increment;
+ r32 camera_speed = 1.0f;
+
+ Mat4 view = camera_create4m(camera_pos, camera_look, preset_up_dir);
+
+ uint32_t view_loc = glGetUniformLocation(shader_program, "View");
+ glUniformMatrix4fv(view_loc, 1, GL_TRUE, view.buffer);
+
+ Mat4 proj = perspective4m((r32)To_Radian(90.0), (r32)width / (r32)height, 0.1f, 100.0f);
+ uint32_t proj_loc = glGetUniformLocation(shader_program, "Projection");
+ glUniformMatrix4fv(proj_loc, 1, GL_TRUE, proj.buffer);
+
+ glUseProgram(light_sp);
+ Mat4 light_model = translation_matrix4m(light_location.x, light_location.y, light_location.z);
+ //Mat4 light_model = init_value4m(1.0);
+ //light_model = multiply4m(light_translation, light_model);
+
+ uint32_t light_model_loc = glGetUniformLocation(light_sp, "Model");
+ glUniformMatrix4fv(light_model_loc, 1, GL_TRUE, light_model.buffer);
+
+ uint32_t light_view_loc = glGetUniformLocation(light_sp, "View");
+ glUniformMatrix4fv(light_view_loc, 1, GL_TRUE, view.buffer);
+
+ uint32_t light_proj_loc = glGetUniformLocation(light_sp, "Projection");
+ glUniformMatrix4fv(light_proj_loc, 1, GL_TRUE, proj.buffer);
+
+ glEnable(GL_DEPTH_TEST);
+
+ u8 game_running = true;
+
+ u8 hold_lshift = false;
+ u8 move_w = false;
+ u8 move_a = false;
+ u8 move_s = false;
+ u8 move_d = false;
+
+ while(game_running)
+ {
+
+ // frame delta
+ time_curr = SDL_GetTicks64() / 100.0;
+ r32 time_delta = time_curr - time_prev;
+
+ r32 camera_speed_adjusted = time_delta * camera_speed;
+ camera_look_increment = scaler_multiply3v(camera_look, camera_speed_adjusted);
+
+ SDL_Event ev;
+ while(SDL_PollEvent(&ev))
+ {
+
+ // INPUT
+ switch (ev.type)
+ {
+ case (SDL_QUIT):
+ {
+ game_running = false;
+ } break;
+ case (SDL_KEYDOWN):
+ {
+ if (ev.key.keysym.sym == SDLK_LSHIFT)
+ {
+ hold_lshift = true;
+ }
+ if (ev.key.keysym.sym == SDLK_SPACE)
+ {}
+ if (ev.key.keysym.sym == SDLK_UP)
+ {
+ {
+ specular_shine_factor = specular_shine_factor*2.0;
+ }
+ }
+ if (ev.key.keysym.sym == SDLK_DOWN)
+ {
+ {
+ specular_shine_factor = specular_shine_factor/2.0;
+ }
+ }
+ if (ev.key.keysym.sym == SDLK_w)
+ {
+ move_w = true;
+ }
+ if (ev.key.keysym.sym == SDLK_s)
+ {
+ move_s = true;
+ }
+ if (ev.key.keysym.sym == SDLK_a)
+ {
+ move_a = true;
+ }
+ if (ev.key.keysym.sym == SDLK_d)
+ {
+ move_d = true;
+ }
+ } break;
+ case (SDL_KEYUP):
+ {
+ if (ev.key.keysym.sym == SDLK_LSHIFT)
+ {
+ hold_lshift = false;
+ }
+ if (ev.key.keysym.sym == SDLK_w)
+ {
+ move_w = false;
+ }
+ if (ev.key.keysym.sym == SDLK_s)
+ {
+ move_s = false;
+ }
+ if (ev.key.keysym.sym == SDLK_a)
+ {
+ move_a = false;
+ }
+ if (ev.key.keysym.sym == SDLK_d)
+ {
+ move_d = false;
+ }
+ } break;
+ case (SDL_MOUSEMOTION):
+ {
+ SDL_MouseMotionEvent mouse_event = ev.motion;
+ r32 x_motion = (r32)mouse_event.xrel;
+ r32 y_motion = (r32)mouse_event.yrel;
+ if (x_motion != 0.0 || y_motion != 0.0)
+ {
+ angle_yaw = angle_yaw + To_Radian(x_motion * 0.1f);
+ angle_pitch = clampf(angle_pitch + To_Radian(-y_motion * 0.1f), To_Radian(-89.0f), To_Radian(89.0f));
+
+ camera_look = camera_look_around(angle_pitch, angle_yaw);
+ }
+ } break;
+ default:
+ {
+ break;
+ }
+ }
+ }
+
+ // PROCESS
+ if (move_w)
+ {
+ camera_pos = add3v(camera_pos, camera_look_increment);
+ }
+ if (move_s)
+ {
+ camera_pos = subtract3v(camera_pos, camera_look_increment);
+ }
+ if (move_a)
+ {
+ Vec3 camera_right = normalize3v(cross_multiply3v(preset_up_dir, camera_look));
+ Vec3 camera_right_scaled = scaler_multiply3v(camera_right, camera_speed_adjusted);
+ camera_pos = add3v(camera_pos, camera_right_scaled);
+ }
+ if (move_d)
+ {
+ Vec3 camera_right = normalize3v(cross_multiply3v(preset_up_dir, camera_look));
+ Vec3 camera_right_scaled = scaler_multiply3v(camera_right, camera_speed_adjusted);
+ camera_pos = subtract3v(camera_pos, camera_right_scaled);
+ }
+ // light_location.z = 10.00 * sinf(time_curr/10.0);
+ view = camera_create4m(camera_pos, add3v(camera_pos, camera_look), preset_up_dir);
+ // object shader program stuff
+ glUseProgram(shader_program);
+ //glUniform1f(shine_factor_loc, specular_shine_factor);
+
+ glUniformMatrix4fv(view_loc, 1, GL_TRUE, view.buffer);
+ glUniform3fv(camera_pos_loc, 1, camera_pos.data);
+
+ // light/lamp shader program stuff
+ glUseProgram(light_sp);
+ glUniformMatrix4fv(light_view_loc, 1, GL_TRUE, view.buffer);
+
+ time_prev = time_curr;
+
+
+ // OUTPUT
+ glClearColor(1.0f, 0.6f, .6f, 1.0f);
+ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
+
+ glActiveTexture(GL_TEXTURE0);
+ glBindTexture(GL_TEXTURE_2D, smiling_texture);
+
+ glActiveTexture(GL_TEXTURE1);
+ glBindTexture(GL_TEXTURE_2D, container_texture);
+
+ glUseProgram(light_sp);
+ glBindVertexArray(light_VAO);
+ glDrawArrays(GL_TRIANGLES, 0, 36);
+ glBindVertexArray(0);
+ glUseProgram(0);
+
+ glUseProgram(shader_program);
+ glBindVertexArray(VAO);
+
+ for (int i = 0; i < 5; i++)
+ {
+ Vec3 translation_iter = model_translations[i];
+ Mat4 model = init_value4m(1.0);
+ Mat4 model_translation = translation_matrix4m(translation_iter.x, translation_iter.y, translation_iter.z);
+ model = multiply4m(model_translation, model);
+ glUniformMatrix4fv(model_loc, 1, GL_TRUE, model.buffer);
+ glDrawArrays(GL_TRIANGLES, 0, 36);
+ }
+
+ glBindVertexArray(0);
+
+
+ SDL_GL_SwapWindow(window);
+ }
+
+ // opengl free calls
+ glDeleteVertexArrays(1, &VAO);
+ glDeleteBuffers(1, &VBO);
+ glDeleteProgram(shader_program);
+
+ // sdl free calls
+ SDL_GL_DeleteContext(context);
+ SDL_DestroyWindow(window);
+ SDL_Quit();
+ return 0;
+}