summaryrefslogtreecommitdiff
path: root/thirdparty/raylib_browser/include/raymath.h
blob: 62d52f8fd4475c4d229006f1207b12fb42629fed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
/**********************************************************************************************
*
*   raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
*
*   CONVENTIONS:
*     - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
*       math operations performed by the library consider the structure as it was column-major
*       It is like transposed versions of the matrices are used for all the maths
*       It benefits some functions making them cache-friendly and also avoids matrix
*       transpositions sometimes required by OpenGL
*       Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
*     - Functions are always self-contained, no function use another raymath function inside,
*       required code is directly re-implemented inside
*     - Functions input parameters are always received by value (2 unavoidable exceptions)
*     - Functions use always a "result" variable for return
*     - Functions are always defined inline
*     - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
*     - No compound literals used to make sure libray is compatible with C++
*
*   CONFIGURATION:
*       #define RAYMATH_IMPLEMENTATION
*           Generates the implementation of the library into the included file.
*           If not defined, the library is in header only mode and can be included in other headers
*           or source files without problems. But only ONE file should hold the implementation.
*
*       #define RAYMATH_STATIC_INLINE
*           Define static inline functions code, so #include header suffices for use.
*           This may use up lots of memory.
*
*
*   LICENSE: zlib/libpng
*
*   Copyright (c) 2015-2024 Ramon Santamaria (@raysan5)
*
*   This software is provided "as-is", without any express or implied warranty. In no event
*   will the authors be held liable for any damages arising from the use of this software.
*
*   Permission is granted to anyone to use this software for any purpose, including commercial
*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
*     1. The origin of this software must not be misrepresented; you must not claim that you
*     wrote the original software. If you use this software in a product, an acknowledgment
*     in the product documentation would be appreciated but is not required.
*
*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
*     as being the original software.
*
*     3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/

#ifndef RAYMATH_H
#define RAYMATH_H

#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE)
    #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory"
#endif

// Function specifiers definition
#if defined(RAYMATH_IMPLEMENTATION)
    #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
        #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll)
    #elif defined(BUILD_LIBTYPE_SHARED)
        #define RMAPI __attribute__((visibility("default"))) // We are building raylib as a Unix shared library (.so/.dylib)
    #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
        #define RMAPI __declspec(dllimport)         // We are using raylib as a Win32 shared library (.dll)
    #else
        #define RMAPI extern inline // Provide external definition
    #endif
#elif defined(RAYMATH_STATIC_INLINE)
    #define RMAPI static inline // Functions may be inlined, no external out-of-line definition
#else
    #if defined(__TINYC__)
        #define RMAPI static inline // plain inline not supported by tinycc (See issue #435)
    #else
        #define RMAPI inline        // Functions may be inlined or external definition used
    #endif
#endif


//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PI
    #define PI 3.14159265358979323846f
#endif

#ifndef EPSILON
    #define EPSILON 0.000001f
#endif

#ifndef DEG2RAD
    #define DEG2RAD (PI/180.0f)
#endif

#ifndef RAD2DEG
    #define RAD2DEG (180.0f/PI)
#endif

// Get float vector for Matrix
#ifndef MatrixToFloat
    #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
#endif

// Get float vector for Vector3
#ifndef Vector3ToFloat
    #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
#endif

//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#if !defined(RL_VECTOR2_TYPE)
// Vector2 type
typedef struct Vector2 {
    float x;
    float y;
} Vector2;
#define RL_VECTOR2_TYPE
#endif

#if !defined(RL_VECTOR3_TYPE)
// Vector3 type
typedef struct Vector3 {
    float x;
    float y;
    float z;
} Vector3;
#define RL_VECTOR3_TYPE
#endif

#if !defined(RL_VECTOR4_TYPE)
// Vector4 type
typedef struct Vector4 {
    float x;
    float y;
    float z;
    float w;
} Vector4;
#define RL_VECTOR4_TYPE
#endif

#if !defined(RL_QUATERNION_TYPE)
// Quaternion type
typedef Vector4 Quaternion;
#define RL_QUATERNION_TYPE
#endif

#if !defined(RL_MATRIX_TYPE)
// Matrix type (OpenGL style 4x4 - right handed, column major)
typedef struct Matrix {
    float m0, m4, m8, m12;      // Matrix first row (4 components)
    float m1, m5, m9, m13;      // Matrix second row (4 components)
    float m2, m6, m10, m14;     // Matrix third row (4 components)
    float m3, m7, m11, m15;     // Matrix fourth row (4 components)
} Matrix;
#define RL_MATRIX_TYPE
#endif

// NOTE: Helper types to be used instead of array return types for *ToFloat functions
typedef struct float3 {
    float v[3];
} float3;

typedef struct float16 {
    float v[16];
} float16;

#include <math.h>       // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabsf()

//----------------------------------------------------------------------------------
// Module Functions Definition - Utils math
//----------------------------------------------------------------------------------

// Clamp float value
RMAPI float Clamp(float value, float min, float max)
{
    float result = (value < min)? min : value;

    if (result > max) result = max;

    return result;
}

// Calculate linear interpolation between two floats
RMAPI float Lerp(float start, float end, float amount)
{
    float result = start + amount*(end - start);

    return result;
}

// Normalize input value within input range
RMAPI float Normalize(float value, float start, float end)
{
    float result = (value - start)/(end - start);

    return result;
}

// Remap input value within input range to output range
RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd)
{
    float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart;

    return result;
}

// Wrap input value from min to max
RMAPI float Wrap(float value, float min, float max)
{
    float result = value - (max - min)*floorf((value - min)/(max - min));

    return result;
}

// Check whether two given floats are almost equal
RMAPI int FloatEquals(float x, float y)
{
#if !defined(EPSILON)
    #define EPSILON 0.000001f
#endif

    int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))));

    return result;
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Vector2 math
//----------------------------------------------------------------------------------

// Vector with components value 0.0f
RMAPI Vector2 Vector2Zero(void)
{
    Vector2 result = { 0.0f, 0.0f };

    return result;
}

// Vector with components value 1.0f
RMAPI Vector2 Vector2One(void)
{
    Vector2 result = { 1.0f, 1.0f };

    return result;
}

// Add two vectors (v1 + v2)
RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x + v2.x, v1.y + v2.y };

    return result;
}

// Add vector and float value
RMAPI Vector2 Vector2AddValue(Vector2 v, float add)
{
    Vector2 result = { v.x + add, v.y + add };

    return result;
}

// Subtract two vectors (v1 - v2)
RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x - v2.x, v1.y - v2.y };

    return result;
}

// Subtract vector by float value
RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub)
{
    Vector2 result = { v.x - sub, v.y - sub };

    return result;
}

// Calculate vector length
RMAPI float Vector2Length(Vector2 v)
{
    float result = sqrtf((v.x*v.x) + (v.y*v.y));

    return result;
}

// Calculate vector square length
RMAPI float Vector2LengthSqr(Vector2 v)
{
    float result = (v.x*v.x) + (v.y*v.y);

    return result;
}

// Calculate two vectors dot product
RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
    float result = (v1.x*v2.x + v1.y*v2.y);

    return result;
}

// Calculate distance between two vectors
RMAPI float Vector2Distance(Vector2 v1, Vector2 v2)
{
    float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));

    return result;
}

// Calculate square distance between two vectors
RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
{
    float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));

    return result;
}

// Calculate angle between two vectors
// NOTE: Angle is calculated from origin point (0, 0)
RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
{
    float result = 0.0f;

    float dot = v1.x*v2.x + v1.y*v2.y;
    float det = v1.x*v2.y - v1.y*v2.x;

    result = atan2f(det, dot);

    return result;
}

// Calculate angle defined by a two vectors line
// NOTE: Parameters need to be normalized
// Current implementation should be aligned with glm::angle
RMAPI float Vector2LineAngle(Vector2 start, Vector2 end)
{
    float result = 0.0f;

    // TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
    result = -atan2f(end.y - start.y, end.x - start.x);

    return result;
}

// Scale vector (multiply by value)
RMAPI Vector2 Vector2Scale(Vector2 v, float scale)
{
    Vector2 result = { v.x*scale, v.y*scale };

    return result;
}

// Multiply vector by vector
RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x*v2.x, v1.y*v2.y };

    return result;
}

// Negate vector
RMAPI Vector2 Vector2Negate(Vector2 v)
{
    Vector2 result = { -v.x, -v.y };

    return result;
}

// Divide vector by vector
RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x/v2.x, v1.y/v2.y };

    return result;
}

// Normalize provided vector
RMAPI Vector2 Vector2Normalize(Vector2 v)
{
    Vector2 result = { 0 };
    float length = sqrtf((v.x*v.x) + (v.y*v.y));

    if (length > 0)
    {
        float ilength = 1.0f/length;
        result.x = v.x*ilength;
        result.y = v.y*ilength;
    }

    return result;
}

// Transforms a Vector2 by a given Matrix
RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat)
{
    Vector2 result = { 0 };

    float x = v.x;
    float y = v.y;
    float z = 0;

    result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
    result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;

    return result;
}

// Calculate linear interpolation between two vectors
RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
{
    Vector2 result = { 0 };

    result.x = v1.x + amount*(v2.x - v1.x);
    result.y = v1.y + amount*(v2.y - v1.y);

    return result;
}

// Calculate reflected vector to normal
RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
{
    Vector2 result = { 0 };

    float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product

    result.x = v.x - (2.0f*normal.x)*dotProduct;
    result.y = v.y - (2.0f*normal.y)*dotProduct;

    return result;
}

// Get min value for each pair of components
RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2)
{
    Vector2 result = { 0 };

    result.x = fminf(v1.x, v2.x);
    result.y = fminf(v1.y, v2.y);

    return result;
}

// Get max value for each pair of components
RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2)
{
    Vector2 result = { 0 };

    result.x = fmaxf(v1.x, v2.x);
    result.y = fmaxf(v1.y, v2.y);

    return result;
}

// Rotate vector by angle
RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
{
    Vector2 result = { 0 };

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.x = v.x*cosres - v.y*sinres;
    result.y = v.x*sinres + v.y*cosres;

    return result;
}

// Move Vector towards target
RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
{
    Vector2 result = { 0 };

    float dx = target.x - v.x;
    float dy = target.y - v.y;
    float value = (dx*dx) + (dy*dy);

    if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;

    float dist = sqrtf(value);

    result.x = v.x + dx/dist*maxDistance;
    result.y = v.y + dy/dist*maxDistance;

    return result;
}

// Invert the given vector
RMAPI Vector2 Vector2Invert(Vector2 v)
{
    Vector2 result = { 1.0f/v.x, 1.0f/v.y };

    return result;
}

// Clamp the components of the vector between
// min and max values specified by the given vectors
RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max)
{
    Vector2 result = { 0 };

    result.x = fminf(max.x, fmaxf(min.x, v.x));
    result.y = fminf(max.y, fmaxf(min.y, v.y));

    return result;
}

// Clamp the magnitude of the vector between two min and max values
RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
{
    Vector2 result = v;

    float length = (v.x*v.x) + (v.y*v.y);
    if (length > 0.0f)
    {
        length = sqrtf(length);

        float scale = 1;    // By default, 1 as the neutral element.
        if (length < min)
        {
            scale = min/length;
        }
        else if (length > max)
        {
            scale = max/length;
        }

        result.x = v.x*scale;
        result.y = v.y*scale;
    }

    return result;
}

// Check whether two given vectors are almost equal
RMAPI int Vector2Equals(Vector2 p, Vector2 q)
{
#if !defined(EPSILON)
    #define EPSILON 0.000001f
#endif

    int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
                  ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y)))));

    return result;
}

// Compute the direction of a refracted ray
// v: normalized direction of the incoming ray
// n: normalized normal vector of the interface of two optical media
// r: ratio of the refractive index of the medium from where the ray comes
//    to the refractive index of the medium on the other side of the surface
RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r)
{
    Vector2 result = { 0 };

    float dot = v.x*n.x + v.y*n.y;
    float d = 1.0f - r*r*(1.0f - dot*dot);

    if (d >= 0.0f)
    {
        d = sqrtf(d);
        v.x = r*v.x - (r*dot + d)*n.x;
        v.y = r*v.y - (r*dot + d)*n.y;

        result = v;
    }

    return result;
}


//----------------------------------------------------------------------------------
// Module Functions Definition - Vector3 math
//----------------------------------------------------------------------------------

// Vector with components value 0.0f
RMAPI Vector3 Vector3Zero(void)
{
    Vector3 result = { 0.0f, 0.0f, 0.0f };

    return result;
}

// Vector with components value 1.0f
RMAPI Vector3 Vector3One(void)
{
    Vector3 result = { 1.0f, 1.0f, 1.0f };

    return result;
}

// Add two vectors
RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };

    return result;
}

// Add vector and float value
RMAPI Vector3 Vector3AddValue(Vector3 v, float add)
{
    Vector3 result = { v.x + add, v.y + add, v.z + add };

    return result;
}

// Subtract two vectors
RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };

    return result;
}

// Subtract vector by float value
RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub)
{
    Vector3 result = { v.x - sub, v.y - sub, v.z - sub };

    return result;
}

// Multiply vector by scalar
RMAPI Vector3 Vector3Scale(Vector3 v, float scalar)
{
    Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };

    return result;
}

// Multiply vector by vector
RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };

    return result;
}

// Calculate two vectors cross product
RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };

    return result;
}

// Calculate one vector perpendicular vector
RMAPI Vector3 Vector3Perpendicular(Vector3 v)
{
    Vector3 result = { 0 };

    float min = fabsf(v.x);
    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};

    if (fabsf(v.y) < min)
    {
        min = fabsf(v.y);
        Vector3 tmp = {0.0f, 1.0f, 0.0f};
        cardinalAxis = tmp;
    }

    if (fabsf(v.z) < min)
    {
        Vector3 tmp = {0.0f, 0.0f, 1.0f};
        cardinalAxis = tmp;
    }

    // Cross product between vectors
    result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y;
    result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z;
    result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x;

    return result;
}

// Calculate vector length
RMAPI float Vector3Length(const Vector3 v)
{
    float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);

    return result;
}

// Calculate vector square length
RMAPI float Vector3LengthSqr(const Vector3 v)
{
    float result = v.x*v.x + v.y*v.y + v.z*v.z;

    return result;
}

// Calculate two vectors dot product
RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2)
{
    float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);

    return result;
}

// Calculate distance between two vectors
RMAPI float Vector3Distance(Vector3 v1, Vector3 v2)
{
    float result = 0.0f;

    float dx = v2.x - v1.x;
    float dy = v2.y - v1.y;
    float dz = v2.z - v1.z;
    result = sqrtf(dx*dx + dy*dy + dz*dz);

    return result;
}

// Calculate square distance between two vectors
RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2)
{
    float result = 0.0f;

    float dx = v2.x - v1.x;
    float dy = v2.y - v1.y;
    float dz = v2.z - v1.z;
    result = dx*dx + dy*dy + dz*dz;

    return result;
}

// Calculate angle between two vectors
RMAPI float Vector3Angle(Vector3 v1, Vector3 v2)
{
    float result = 0.0f;

    Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
    float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z);
    float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    result = atan2f(len, dot);

    return result;
}

// Negate provided vector (invert direction)
RMAPI Vector3 Vector3Negate(Vector3 v)
{
    Vector3 result = { -v.x, -v.y, -v.z };

    return result;
}

// Divide vector by vector
RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };

    return result;
}

// Normalize provided vector
RMAPI Vector3 Vector3Normalize(Vector3 v)
{
    Vector3 result = v;

    float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    if (length != 0.0f)
    {
        float ilength = 1.0f/length;

        result.x *= ilength;
        result.y *= ilength;
        result.z *= ilength;
    }

    return result;
}

//Calculate the projection of the vector v1 on to v2
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
{
    Vector3 result = { 0 };

    float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);

    float mag = v1dv2/v2dv2;

    result.x = v2.x*mag;
    result.y = v2.y*mag;
    result.z = v2.z*mag;

    return result;
}

//Calculate the rejection of the vector v1 on to v2
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
{
    Vector3 result = { 0 };

    float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);

    float mag = v1dv2/v2dv2;

    result.x = v1.x - (v2.x*mag);
    result.y = v1.y - (v2.y*mag);
    result.z = v1.z - (v2.z*mag);

    return result;
}

// Orthonormalize provided vectors
// Makes vectors normalized and orthogonal to each other
// Gram-Schmidt function implementation
RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
{
    float length = 0.0f;
    float ilength = 0.0f;

    // Vector3Normalize(*v1);
    Vector3 v = *v1;
    length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    if (length == 0.0f) length = 1.0f;
    ilength = 1.0f/length;
    v1->x *= ilength;
    v1->y *= ilength;
    v1->z *= ilength;

    // Vector3CrossProduct(*v1, *v2)
    Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x };

    // Vector3Normalize(vn1);
    v = vn1;
    length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    if (length == 0.0f) length = 1.0f;
    ilength = 1.0f/length;
    vn1.x *= ilength;
    vn1.y *= ilength;
    vn1.z *= ilength;

    // Vector3CrossProduct(vn1, *v1)
    Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x };

    *v2 = vn2;
}

// Transforms a Vector3 by a given Matrix
RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat)
{
    Vector3 result = { 0 };

    float x = v.x;
    float y = v.y;
    float z = v.z;

    result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
    result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
    result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;

    return result;
}

// Transform a vector by quaternion rotation
RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
{
    Vector3 result = { 0 };

    result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
    result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
    result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);

    return result;
}

// Rotates a vector around an axis
RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
{
    // Using Euler-Rodrigues Formula
    // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula

    Vector3 result = v;

    // Vector3Normalize(axis);
    float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
    if (length == 0.0f) length = 1.0f;
    float ilength = 1.0f/length;
    axis.x *= ilength;
    axis.y *= ilength;
    axis.z *= ilength;

    angle /= 2.0f;
    float a = sinf(angle);
    float b = axis.x*a;
    float c = axis.y*a;
    float d = axis.z*a;
    a = cosf(angle);
    Vector3 w = { b, c, d };

    // Vector3CrossProduct(w, v)
    Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x };

    // Vector3CrossProduct(w, wv)
    Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x };

    // Vector3Scale(wv, 2*a)
    a *= 2;
    wv.x *= a;
    wv.y *= a;
    wv.z *= a;

    // Vector3Scale(wwv, 2)
    wwv.x *= 2;
    wwv.y *= 2;
    wwv.z *= 2;

    result.x += wv.x;
    result.y += wv.y;
    result.z += wv.z;

    result.x += wwv.x;
    result.y += wwv.y;
    result.z += wwv.z;

    return result;
}

// Move Vector towards target
RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance)
{
    Vector3 result = { 0 };

    float dx = target.x - v.x;
    float dy = target.y - v.y;
    float dz = target.z - v.z;
    float value = (dx*dx) + (dy*dy) + (dz*dz);

    if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;

    float dist = sqrtf(value);

    result.x = v.x + dx/dist*maxDistance;
    result.y = v.y + dy/dist*maxDistance;
    result.z = v.z + dz/dist*maxDistance;

    return result;
}

// Calculate linear interpolation between two vectors
RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
{
    Vector3 result = { 0 };

    result.x = v1.x + amount*(v2.x - v1.x);
    result.y = v1.y + amount*(v2.y - v1.y);
    result.z = v1.z + amount*(v2.z - v1.z);

    return result;
}

// Calculate cubic hermite interpolation between two vectors and their tangents
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount)
{
    Vector3 result = { 0 };

    float amountPow2 = amount*amount;
    float amountPow3 = amount*amount*amount;

    result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x;
    result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y;
    result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z;

    return result;
}

// Calculate reflected vector to normal
RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
{
    Vector3 result = { 0 };

    // I is the original vector
    // N is the normal of the incident plane
    // R = I - (2*N*(DotProduct[I, N]))

    float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z);

    result.x = v.x - (2.0f*normal.x)*dotProduct;
    result.y = v.y - (2.0f*normal.y)*dotProduct;
    result.z = v.z - (2.0f*normal.z)*dotProduct;

    return result;
}

// Get min value for each pair of components
RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2)
{
    Vector3 result = { 0 };

    result.x = fminf(v1.x, v2.x);
    result.y = fminf(v1.y, v2.y);
    result.z = fminf(v1.z, v2.z);

    return result;
}

// Get max value for each pair of components
RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2)
{
    Vector3 result = { 0 };

    result.x = fmaxf(v1.x, v2.x);
    result.y = fmaxf(v1.y, v2.y);
    result.z = fmaxf(v1.z, v2.z);

    return result;
}

// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
// NOTE: Assumes P is on the plane of the triangle
RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
{
    Vector3 result = { 0 };

    Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z };   // Vector3Subtract(b, a)
    Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z };   // Vector3Subtract(c, a)
    Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z };   // Vector3Subtract(p, a)
    float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z);    // Vector3DotProduct(v0, v0)
    float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z);    // Vector3DotProduct(v0, v1)
    float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z);    // Vector3DotProduct(v1, v1)
    float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z);    // Vector3DotProduct(v2, v0)
    float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z);    // Vector3DotProduct(v2, v1)

    float denom = d00*d11 - d01*d01;

    result.y = (d11*d20 - d01*d21)/denom;
    result.z = (d00*d21 - d01*d20)/denom;
    result.x = 1.0f - (result.z + result.y);

    return result;
}

// Projects a Vector3 from screen space into object space
// NOTE: We are avoiding calling other raymath functions despite available
RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view)
{
    Vector3 result = { 0 };

    // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it
    Matrix matViewProj = {      // MatrixMultiply(view, projection);
        view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12,
        view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13,
        view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14,
        view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15,
        view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12,
        view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13,
        view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14,
        view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15,
        view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12,
        view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13,
        view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14,
        view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15,
        view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12,
        view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13,
        view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14,
        view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 };

    // Calculate inverted matrix -> MatrixInvert(matViewProj);
    // Cache the matrix values (speed optimization)
    float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3;
    float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7;
    float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11;
    float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15;

    float b00 = a00*a11 - a01*a10;
    float b01 = a00*a12 - a02*a10;
    float b02 = a00*a13 - a03*a10;
    float b03 = a01*a12 - a02*a11;
    float b04 = a01*a13 - a03*a11;
    float b05 = a02*a13 - a03*a12;
    float b06 = a20*a31 - a21*a30;
    float b07 = a20*a32 - a22*a30;
    float b08 = a20*a33 - a23*a30;
    float b09 = a21*a32 - a22*a31;
    float b10 = a21*a33 - a23*a31;
    float b11 = a22*a33 - a23*a32;

    // Calculate the invert determinant (inlined to avoid double-caching)
    float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);

    Matrix matViewProjInv = {
        (a11*b11 - a12*b10 + a13*b09)*invDet,
        (-a01*b11 + a02*b10 - a03*b09)*invDet,
        (a31*b05 - a32*b04 + a33*b03)*invDet,
        (-a21*b05 + a22*b04 - a23*b03)*invDet,
        (-a10*b11 + a12*b08 - a13*b07)*invDet,
        (a00*b11 - a02*b08 + a03*b07)*invDet,
        (-a30*b05 + a32*b02 - a33*b01)*invDet,
        (a20*b05 - a22*b02 + a23*b01)*invDet,
        (a10*b10 - a11*b08 + a13*b06)*invDet,
        (-a00*b10 + a01*b08 - a03*b06)*invDet,
        (a30*b04 - a31*b02 + a33*b00)*invDet,
        (-a20*b04 + a21*b02 - a23*b00)*invDet,
        (-a10*b09 + a11*b07 - a12*b06)*invDet,
        (a00*b09 - a01*b07 + a02*b06)*invDet,
        (-a30*b03 + a31*b01 - a32*b00)*invDet,
        (a20*b03 - a21*b01 + a22*b00)*invDet };

    // Create quaternion from source point
    Quaternion quat = { source.x, source.y, source.z, 1.0f };

    // Multiply quat point by unprojecte matrix
    Quaternion qtransformed = {     // QuaternionTransform(quat, matViewProjInv)
        matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w,
        matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w,
        matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w,
        matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w };

    // Normalized world points in vectors
    result.x = qtransformed.x/qtransformed.w;
    result.y = qtransformed.y/qtransformed.w;
    result.z = qtransformed.z/qtransformed.w;

    return result;
}

// Get Vector3 as float array
RMAPI float3 Vector3ToFloatV(Vector3 v)
{
    float3 buffer = { 0 };

    buffer.v[0] = v.x;
    buffer.v[1] = v.y;
    buffer.v[2] = v.z;

    return buffer;
}

// Invert the given vector
RMAPI Vector3 Vector3Invert(Vector3 v)
{
    Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z };

    return result;
}

// Clamp the components of the vector between
// min and max values specified by the given vectors
RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max)
{
    Vector3 result = { 0 };

    result.x = fminf(max.x, fmaxf(min.x, v.x));
    result.y = fminf(max.y, fmaxf(min.y, v.y));
    result.z = fminf(max.z, fmaxf(min.z, v.z));

    return result;
}

// Clamp the magnitude of the vector between two values
RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
{
    Vector3 result = v;

    float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
    if (length > 0.0f)
    {
        length = sqrtf(length);

        float scale = 1;    // By default, 1 as the neutral element.
        if (length < min)
        {
            scale = min/length;
        }
        else if (length > max)
        {
            scale = max/length;
        }

        result.x = v.x*scale;
        result.y = v.y*scale;
        result.z = v.z*scale;
    }

    return result;
}

// Check whether two given vectors are almost equal
RMAPI int Vector3Equals(Vector3 p, Vector3 q)
{
#if !defined(EPSILON)
    #define EPSILON 0.000001f
#endif

    int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
                 ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
                 ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));

    return result;
}

// Compute the direction of a refracted ray
// v: normalized direction of the incoming ray
// n: normalized normal vector of the interface of two optical media
// r: ratio of the refractive index of the medium from where the ray comes
//    to the refractive index of the medium on the other side of the surface
RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
{
    Vector3 result = { 0 };

    float dot = v.x*n.x + v.y*n.y + v.z*n.z;
    float d = 1.0f - r*r*(1.0f - dot*dot);

    if (d >= 0.0f)
    {
        d = sqrtf(d);
        v.x = r*v.x - (r*dot + d)*n.x;
        v.y = r*v.y - (r*dot + d)*n.y;
        v.z = r*v.z - (r*dot + d)*n.z;

        result = v;
    }

    return result;
}


//----------------------------------------------------------------------------------
// Module Functions Definition - Vector4 math
//----------------------------------------------------------------------------------

RMAPI Vector4 Vector4Zero(void)
{
    Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f };
    return result;
}

RMAPI Vector4 Vector4One(void)
{
    Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f };
    return result;
}

RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2)
{
    Vector4 result = {
        v1.x + v2.x,
        v1.y + v2.y,
        v1.z + v2.z,
        v1.w + v2.w
    };
    return result;
}

RMAPI Vector4 Vector4AddValue(Vector4 v, float add)
{
    Vector4 result = {
        v.x + add,
        v.y + add,
        v.z + add,
        v.w + add
    };
    return result;
}

RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2)
{
    Vector4 result = {
        v1.x - v2.x,
        v1.y - v2.y,
        v1.z - v2.z,
        v1.w - v2.w
    };
    return result;
}

RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add)
{
    Vector4 result = {
        v.x - add,
        v.y - add,
        v.z - add,
        v.w - add
    };
    return result;
}

RMAPI float Vector4Length(Vector4 v)
{
    float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
    return result;
}

RMAPI float Vector4LengthSqr(Vector4 v)
{
    float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w);
    return result;
}

RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2)
{
    float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w);
    return result;
}

// Calculate distance between two vectors
RMAPI float Vector4Distance(Vector4 v1, Vector4 v2)
{
    float result = sqrtf(
        (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
        (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w));
    return result;
}

// Calculate square distance between two vectors
RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2)
{
    float result =
        (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
        (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w);

    return result;
}

RMAPI Vector4 Vector4Scale(Vector4 v, float scale)
{
    Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale };
    return result;
}

// Multiply vector by vector
RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2)
{
    Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w };
    return result;
}

// Negate vector
RMAPI Vector4 Vector4Negate(Vector4 v)
{
    Vector4 result = { -v.x, -v.y, -v.z, -v.w };
    return result;
}

// Divide vector by vector
RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2)
{
    Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w };
    return result;
}

// Normalize provided vector
RMAPI Vector4 Vector4Normalize(Vector4 v)
{
    Vector4 result = { 0 };
    float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));

    if (length > 0)
    {
        float ilength = 1.0f/length;
        result.x = v.x*ilength;
        result.y = v.y*ilength;
        result.z = v.z*ilength;
        result.w = v.w*ilength;
    }

    return result;
}

// Get min value for each pair of components
RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2)
{
    Vector4 result = { 0 };

    result.x = fminf(v1.x, v2.x);
    result.y = fminf(v1.y, v2.y);
    result.z = fminf(v1.z, v2.z);
    result.w = fminf(v1.w, v2.w);

    return result;
}

// Get max value for each pair of components
RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2)
{
    Vector4 result = { 0 };

    result.x = fmaxf(v1.x, v2.x);
    result.y = fmaxf(v1.y, v2.y);
    result.z = fmaxf(v1.z, v2.z);
    result.w = fmaxf(v1.w, v2.w);

    return result;
}

// Calculate linear interpolation between two vectors
RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount)
{
    Vector4 result = { 0 };

    result.x = v1.x + amount*(v2.x - v1.x);
    result.y = v1.y + amount*(v2.y - v1.y);
    result.z = v1.z + amount*(v2.z - v1.z);
    result.w = v1.w + amount*(v2.w - v1.w);

    return result;
}

// Move Vector towards target
RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance)
{
    Vector4 result = { 0 };

    float dx = target.x - v.x;
    float dy = target.y - v.y;
    float dz = target.z - v.z;
    float dw = target.w - v.w;
    float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw);

    if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;

    float dist = sqrtf(value);

    result.x = v.x + dx/dist*maxDistance;
    result.y = v.y + dy/dist*maxDistance;
    result.z = v.z + dz/dist*maxDistance;
    result.w = v.w + dw/dist*maxDistance;

    return result;
}

// Invert the given vector
RMAPI Vector4 Vector4Invert(Vector4 v)
{
    Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w };
    return result;
}

// Check whether two given vectors are almost equal
RMAPI int Vector4Equals(Vector4 p, Vector4 q)
{
#if !defined(EPSILON)
    #define EPSILON 0.000001f
#endif

    int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
                  ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
                  ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
                  ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))));
    return result;
}


//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix math
//----------------------------------------------------------------------------------

// Compute matrix determinant
RMAPI float MatrixDeterminant(Matrix mat)
{
    float result = 0.0f;

    // Cache the matrix values (speed optimization)
    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;

    result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
             a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
             a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
             a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
             a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
             a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;

    return result;
}

// Get the trace of the matrix (sum of the values along the diagonal)
RMAPI float MatrixTrace(Matrix mat)
{
    float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);

    return result;
}

// Transposes provided matrix
RMAPI Matrix MatrixTranspose(Matrix mat)
{
    Matrix result = { 0 };

    result.m0 = mat.m0;
    result.m1 = mat.m4;
    result.m2 = mat.m8;
    result.m3 = mat.m12;
    result.m4 = mat.m1;
    result.m5 = mat.m5;
    result.m6 = mat.m9;
    result.m7 = mat.m13;
    result.m8 = mat.m2;
    result.m9 = mat.m6;
    result.m10 = mat.m10;
    result.m11 = mat.m14;
    result.m12 = mat.m3;
    result.m13 = mat.m7;
    result.m14 = mat.m11;
    result.m15 = mat.m15;

    return result;
}

// Invert provided matrix
RMAPI Matrix MatrixInvert(Matrix mat)
{
    Matrix result = { 0 };

    // Cache the matrix values (speed optimization)
    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;

    float b00 = a00*a11 - a01*a10;
    float b01 = a00*a12 - a02*a10;
    float b02 = a00*a13 - a03*a10;
    float b03 = a01*a12 - a02*a11;
    float b04 = a01*a13 - a03*a11;
    float b05 = a02*a13 - a03*a12;
    float b06 = a20*a31 - a21*a30;
    float b07 = a20*a32 - a22*a30;
    float b08 = a20*a33 - a23*a30;
    float b09 = a21*a32 - a22*a31;
    float b10 = a21*a33 - a23*a31;
    float b11 = a22*a33 - a23*a32;

    // Calculate the invert determinant (inlined to avoid double-caching)
    float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);

    result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
    result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
    result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
    result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
    result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
    result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
    result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
    result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
    result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
    result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
    result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
    result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
    result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
    result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
    result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
    result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;

    return result;
}

// Get identity matrix
RMAPI Matrix MatrixIdentity(void)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Add two matrices
RMAPI Matrix MatrixAdd(Matrix left, Matrix right)
{
    Matrix result = { 0 };

    result.m0 = left.m0 + right.m0;
    result.m1 = left.m1 + right.m1;
    result.m2 = left.m2 + right.m2;
    result.m3 = left.m3 + right.m3;
    result.m4 = left.m4 + right.m4;
    result.m5 = left.m5 + right.m5;
    result.m6 = left.m6 + right.m6;
    result.m7 = left.m7 + right.m7;
    result.m8 = left.m8 + right.m8;
    result.m9 = left.m9 + right.m9;
    result.m10 = left.m10 + right.m10;
    result.m11 = left.m11 + right.m11;
    result.m12 = left.m12 + right.m12;
    result.m13 = left.m13 + right.m13;
    result.m14 = left.m14 + right.m14;
    result.m15 = left.m15 + right.m15;

    return result;
}

// Subtract two matrices (left - right)
RMAPI Matrix MatrixSubtract(Matrix left, Matrix right)
{
    Matrix result = { 0 };

    result.m0 = left.m0 - right.m0;
    result.m1 = left.m1 - right.m1;
    result.m2 = left.m2 - right.m2;
    result.m3 = left.m3 - right.m3;
    result.m4 = left.m4 - right.m4;
    result.m5 = left.m5 - right.m5;
    result.m6 = left.m6 - right.m6;
    result.m7 = left.m7 - right.m7;
    result.m8 = left.m8 - right.m8;
    result.m9 = left.m9 - right.m9;
    result.m10 = left.m10 - right.m10;
    result.m11 = left.m11 - right.m11;
    result.m12 = left.m12 - right.m12;
    result.m13 = left.m13 - right.m13;
    result.m14 = left.m14 - right.m14;
    result.m15 = left.m15 - right.m15;

    return result;
}

// Get two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
RMAPI Matrix MatrixMultiply(Matrix left, Matrix right)
{
    Matrix result = { 0 };

    result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
    result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
    result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
    result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
    result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
    result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
    result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
    result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
    result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
    result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
    result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
    result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
    result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
    result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
    result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
    result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;

    return result;
}

// Get translation matrix
RMAPI Matrix MatrixTranslate(float x, float y, float z)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, x,
                      0.0f, 1.0f, 0.0f, y,
                      0.0f, 0.0f, 1.0f, z,
                      0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Create rotation matrix from axis and angle
// NOTE: Angle should be provided in radians
RMAPI Matrix MatrixRotate(Vector3 axis, float angle)
{
    Matrix result = { 0 };

    float x = axis.x, y = axis.y, z = axis.z;

    float lengthSquared = x*x + y*y + z*z;

    if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
    {
        float ilength = 1.0f/sqrtf(lengthSquared);
        x *= ilength;
        y *= ilength;
        z *= ilength;
    }

    float sinres = sinf(angle);
    float cosres = cosf(angle);
    float t = 1.0f - cosres;

    result.m0 = x*x*t + cosres;
    result.m1 = y*x*t + z*sinres;
    result.m2 = z*x*t - y*sinres;
    result.m3 = 0.0f;

    result.m4 = x*y*t - z*sinres;
    result.m5 = y*y*t + cosres;
    result.m6 = z*y*t + x*sinres;
    result.m7 = 0.0f;

    result.m8 = x*z*t + y*sinres;
    result.m9 = y*z*t - x*sinres;
    result.m10 = z*z*t + cosres;
    result.m11 = 0.0f;

    result.m12 = 0.0f;
    result.m13 = 0.0f;
    result.m14 = 0.0f;
    result.m15 = 1.0f;

    return result;
}

// Get x-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateX(float angle)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m5 = cosres;
    result.m6 = sinres;
    result.m9 = -sinres;
    result.m10 = cosres;

    return result;
}

// Get y-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateY(float angle)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m0 = cosres;
    result.m2 = -sinres;
    result.m8 = sinres;
    result.m10 = cosres;

    return result;
}

// Get z-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateZ(float angle)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m0 = cosres;
    result.m1 = sinres;
    result.m4 = -sinres;
    result.m5 = cosres;

    return result;
}


// Get xyz-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateXYZ(Vector3 angle)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()

    float cosz = cosf(-angle.z);
    float sinz = sinf(-angle.z);
    float cosy = cosf(-angle.y);
    float siny = sinf(-angle.y);
    float cosx = cosf(-angle.x);
    float sinx = sinf(-angle.x);

    result.m0 = cosz*cosy;
    result.m1 = (cosz*siny*sinx) - (sinz*cosx);
    result.m2 = (cosz*siny*cosx) + (sinz*sinx);

    result.m4 = sinz*cosy;
    result.m5 = (sinz*siny*sinx) + (cosz*cosx);
    result.m6 = (sinz*siny*cosx) - (cosz*sinx);

    result.m8 = -siny;
    result.m9 = cosy*sinx;
    result.m10= cosy*cosx;

    return result;
}

// Get zyx-rotation matrix
// NOTE: Angle must be provided in radians
RMAPI Matrix MatrixRotateZYX(Vector3 angle)
{
    Matrix result = { 0 };

    float cz = cosf(angle.z);
    float sz = sinf(angle.z);
    float cy = cosf(angle.y);
    float sy = sinf(angle.y);
    float cx = cosf(angle.x);
    float sx = sinf(angle.x);

    result.m0 = cz*cy;
    result.m4 = cz*sy*sx - cx*sz;
    result.m8 = sz*sx + cz*cx*sy;
    result.m12 = 0;

    result.m1 = cy*sz;
    result.m5 = cz*cx + sz*sy*sx;
    result.m9 = cx*sz*sy - cz*sx;
    result.m13 = 0;

    result.m2 = -sy;
    result.m6 = cy*sx;
    result.m10 = cy*cx;
    result.m14 = 0;

    result.m3 = 0;
    result.m7 = 0;
    result.m11 = 0;
    result.m15 = 1;

    return result;
}

// Get scaling matrix
RMAPI Matrix MatrixScale(float x, float y, float z)
{
    Matrix result = { x, 0.0f, 0.0f, 0.0f,
                      0.0f, y, 0.0f, 0.0f,
                      0.0f, 0.0f, z, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Get perspective projection matrix
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
    Matrix result = { 0 };

    float rl = (float)(right - left);
    float tb = (float)(top - bottom);
    float fn = (float)(farPlane - nearPlane);

    result.m0 = ((float)nearPlane*2.0f)/rl;
    result.m1 = 0.0f;
    result.m2 = 0.0f;
    result.m3 = 0.0f;

    result.m4 = 0.0f;
    result.m5 = ((float)nearPlane*2.0f)/tb;
    result.m6 = 0.0f;
    result.m7 = 0.0f;

    result.m8 = ((float)right + (float)left)/rl;
    result.m9 = ((float)top + (float)bottom)/tb;
    result.m10 = -((float)farPlane + (float)nearPlane)/fn;
    result.m11 = -1.0f;

    result.m12 = 0.0f;
    result.m13 = 0.0f;
    result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
    result.m15 = 0.0f;

    return result;
}

// Get perspective projection matrix
// NOTE: Fovy angle must be provided in radians
RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane)
{
    Matrix result = { 0 };

    double top = nearPlane*tan(fovY*0.5);
    double bottom = -top;
    double right = top*aspect;
    double left = -right;

    // MatrixFrustum(-right, right, -top, top, near, far);
    float rl = (float)(right - left);
    float tb = (float)(top - bottom);
    float fn = (float)(farPlane - nearPlane);

    result.m0 = ((float)nearPlane*2.0f)/rl;
    result.m5 = ((float)nearPlane*2.0f)/tb;
    result.m8 = ((float)right + (float)left)/rl;
    result.m9 = ((float)top + (float)bottom)/tb;
    result.m10 = -((float)farPlane + (float)nearPlane)/fn;
    result.m11 = -1.0f;
    result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;

    return result;
}

// Get orthographic projection matrix
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
    Matrix result = { 0 };

    float rl = (float)(right - left);
    float tb = (float)(top - bottom);
    float fn = (float)(farPlane - nearPlane);

    result.m0 = 2.0f/rl;
    result.m1 = 0.0f;
    result.m2 = 0.0f;
    result.m3 = 0.0f;
    result.m4 = 0.0f;
    result.m5 = 2.0f/tb;
    result.m6 = 0.0f;
    result.m7 = 0.0f;
    result.m8 = 0.0f;
    result.m9 = 0.0f;
    result.m10 = -2.0f/fn;
    result.m11 = 0.0f;
    result.m12 = -((float)left + (float)right)/rl;
    result.m13 = -((float)top + (float)bottom)/tb;
    result.m14 = -((float)farPlane + (float)nearPlane)/fn;
    result.m15 = 1.0f;

    return result;
}

// Get camera look-at matrix (view matrix)
RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
{
    Matrix result = { 0 };

    float length = 0.0f;
    float ilength = 0.0f;

    // Vector3Subtract(eye, target)
    Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z };

    // Vector3Normalize(vz)
    Vector3 v = vz;
    length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    if (length == 0.0f) length = 1.0f;
    ilength = 1.0f/length;
    vz.x *= ilength;
    vz.y *= ilength;
    vz.z *= ilength;

    // Vector3CrossProduct(up, vz)
    Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x };

    // Vector3Normalize(x)
    v = vx;
    length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    if (length == 0.0f) length = 1.0f;
    ilength = 1.0f/length;
    vx.x *= ilength;
    vx.y *= ilength;
    vx.z *= ilength;

    // Vector3CrossProduct(vz, vx)
    Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x };

    result.m0 = vx.x;
    result.m1 = vy.x;
    result.m2 = vz.x;
    result.m3 = 0.0f;
    result.m4 = vx.y;
    result.m5 = vy.y;
    result.m6 = vz.y;
    result.m7 = 0.0f;
    result.m8 = vx.z;
    result.m9 = vy.z;
    result.m10 = vz.z;
    result.m11 = 0.0f;
    result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z);   // Vector3DotProduct(vx, eye)
    result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z);   // Vector3DotProduct(vy, eye)
    result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z);   // Vector3DotProduct(vz, eye)
    result.m15 = 1.0f;

    return result;
}

// Get float array of matrix data
RMAPI float16 MatrixToFloatV(Matrix mat)
{
    float16 result = { 0 };

    result.v[0] = mat.m0;
    result.v[1] = mat.m1;
    result.v[2] = mat.m2;
    result.v[3] = mat.m3;
    result.v[4] = mat.m4;
    result.v[5] = mat.m5;
    result.v[6] = mat.m6;
    result.v[7] = mat.m7;
    result.v[8] = mat.m8;
    result.v[9] = mat.m9;
    result.v[10] = mat.m10;
    result.v[11] = mat.m11;
    result.v[12] = mat.m12;
    result.v[13] = mat.m13;
    result.v[14] = mat.m14;
    result.v[15] = mat.m15;

    return result;
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Quaternion math
//----------------------------------------------------------------------------------

// Add two quaternions
RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
{
    Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};

    return result;
}

// Add quaternion and float value
RMAPI Quaternion QuaternionAddValue(Quaternion q, float add)
{
    Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};

    return result;
}

// Subtract two quaternions
RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
{
    Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};

    return result;
}

// Subtract quaternion and float value
RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub)
{
    Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};

    return result;
}

// Get identity quaternion
RMAPI Quaternion QuaternionIdentity(void)
{
    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Computes the length of a quaternion
RMAPI float QuaternionLength(Quaternion q)
{
    float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);

    return result;
}

// Normalize provided quaternion
RMAPI Quaternion QuaternionNormalize(Quaternion q)
{
    Quaternion result = { 0 };

    float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
    if (length == 0.0f) length = 1.0f;
    float ilength = 1.0f/length;

    result.x = q.x*ilength;
    result.y = q.y*ilength;
    result.z = q.z*ilength;
    result.w = q.w*ilength;

    return result;
}

// Invert provided quaternion
RMAPI Quaternion QuaternionInvert(Quaternion q)
{
    Quaternion result = q;

    float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;

    if (lengthSq != 0.0f)
    {
        float invLength = 1.0f/lengthSq;

        result.x *= -invLength;
        result.y *= -invLength;
        result.z *= -invLength;
        result.w *= invLength;
    }

    return result;
}

// Calculate two quaternion multiplication
RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
{
    Quaternion result = { 0 };

    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;

    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;

    return result;
}

// Scale quaternion by float value
RMAPI Quaternion QuaternionScale(Quaternion q, float mul)
{
    Quaternion result = { 0 };

    result.x = q.x*mul;
    result.y = q.y*mul;
    result.z = q.z*mul;
    result.w = q.w*mul;

    return result;
}

// Divide two quaternions
RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
{
    Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w };

    return result;
}

// Calculate linear interpolation between two quaternions
RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result = { 0 };

    result.x = q1.x + amount*(q2.x - q1.x);
    result.y = q1.y + amount*(q2.y - q1.y);
    result.z = q1.z + amount*(q2.z - q1.z);
    result.w = q1.w + amount*(q2.w - q1.w);

    return result;
}

// Calculate slerp-optimized interpolation between two quaternions
RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result = { 0 };

    // QuaternionLerp(q1, q2, amount)
    result.x = q1.x + amount*(q2.x - q1.x);
    result.y = q1.y + amount*(q2.y - q1.y);
    result.z = q1.z + amount*(q2.z - q1.z);
    result.w = q1.w + amount*(q2.w - q1.w);

    // QuaternionNormalize(q);
    Quaternion q = result;
    float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
    if (length == 0.0f) length = 1.0f;
    float ilength = 1.0f/length;

    result.x = q.x*ilength;
    result.y = q.y*ilength;
    result.z = q.z*ilength;
    result.w = q.w*ilength;

    return result;
}

// Calculates spherical linear interpolation between two quaternions
RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result = { 0 };

#if !defined(EPSILON)
    #define EPSILON 0.000001f
#endif

    float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;

    if (cosHalfTheta < 0)
    {
        q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w;
        cosHalfTheta = -cosHalfTheta;
    }

    if (fabsf(cosHalfTheta) >= 1.0f) result = q1;
    else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
    else
    {
        float halfTheta = acosf(cosHalfTheta);
        float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);

        if (fabsf(sinHalfTheta) < EPSILON)
        {
            result.x = (q1.x*0.5f + q2.x*0.5f);
            result.y = (q1.y*0.5f + q2.y*0.5f);
            result.z = (q1.z*0.5f + q2.z*0.5f);
            result.w = (q1.w*0.5f + q2.w*0.5f);
        }
        else
        {
            float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
            float ratioB = sinf(amount*halfTheta)/sinHalfTheta;

            result.x = (q1.x*ratioA + q2.x*ratioB);
            result.y = (q1.y*ratioA + q2.y*ratioB);
            result.z = (q1.z*ratioA + q2.z*ratioB);
            result.w = (q1.w*ratioA + q2.w*ratioB);
        }
    }

    return result;
}

// Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
// as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t)
{
    float t2 = t*t;
    float t3 = t2*t;
    float h00 = 2*t3 - 3*t2 + 1;
    float h10 = t3 - 2*t2 + t;
    float h01 = -2*t3 + 3*t2;
    float h11 = t3 - t2;

    Quaternion p0 = QuaternionScale(q1, h00);
    Quaternion m0 = QuaternionScale(outTangent1, h10);
    Quaternion p1 = QuaternionScale(q2, h01);
    Quaternion m1 = QuaternionScale(inTangent2, h11);

    Quaternion result = { 0 };

    result = QuaternionAdd(p0, m0);
    result = QuaternionAdd(result, p1);
    result = QuaternionAdd(result, m1);
    result = QuaternionNormalize(result);

    return result;
}

// Calculate quaternion based on the rotation from one vector to another
RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
{
    Quaternion result = { 0 };

    float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z);    // Vector3DotProduct(from, to)
    Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to)

    result.x = cross.x;
    result.y = cross.y;
    result.z = cross.z;
    result.w = 1.0f + cos2Theta;

    // QuaternionNormalize(q);
    // NOTE: Normalize to essentially nlerp the original and identity to 0.5
    Quaternion q = result;
    float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
    if (length == 0.0f) length = 1.0f;
    float ilength = 1.0f/length;

    result.x = q.x*ilength;
    result.y = q.y*ilength;
    result.z = q.z*ilength;
    result.w = q.w*ilength;

    return result;
}

// Get a quaternion for a given rotation matrix
RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
{
    Quaternion result = { 0 };

    float fourWSquaredMinus1 = mat.m0  + mat.m5 + mat.m10;
    float fourXSquaredMinus1 = mat.m0  - mat.m5 - mat.m10;
    float fourYSquaredMinus1 = mat.m5  - mat.m0 - mat.m10;
    float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5;

    int biggestIndex = 0;
    float fourBiggestSquaredMinus1 = fourWSquaredMinus1;
    if (fourXSquaredMinus1 > fourBiggestSquaredMinus1)
    {
        fourBiggestSquaredMinus1 = fourXSquaredMinus1;
        biggestIndex = 1;
    }

    if (fourYSquaredMinus1 > fourBiggestSquaredMinus1)
    {
        fourBiggestSquaredMinus1 = fourYSquaredMinus1;
        biggestIndex = 2;
    }

    if (fourZSquaredMinus1 > fourBiggestSquaredMinus1)
    {
        fourBiggestSquaredMinus1 = fourZSquaredMinus1;
        biggestIndex = 3;
    }

    float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
    float mult = 0.25f/biggestVal;

    switch (biggestIndex)
    {
        case 0:
            result.w = biggestVal;
            result.x = (mat.m6 - mat.m9)*mult;
            result.y = (mat.m8 - mat.m2)*mult;
            result.z = (mat.m1 - mat.m4)*mult;
            break;
        case 1:
            result.x = biggestVal;
            result.w = (mat.m6 - mat.m9)*mult;
            result.y = (mat.m1 + mat.m4)*mult;
            result.z = (mat.m8 + mat.m2)*mult;
            break;
        case 2:
            result.y = biggestVal;
            result.w = (mat.m8 - mat.m2)*mult;
            result.x = (mat.m1 + mat.m4)*mult;
            result.z = (mat.m6 + mat.m9)*mult;
            break;
        case 3:
            result.z = biggestVal;
            result.w = (mat.m1 - mat.m4)*mult;
            result.x = (mat.m8 + mat.m2)*mult;
            result.y = (mat.m6 + mat.m9)*mult;
            break;
    }

    return result;
}

// Get a matrix for a given quaternion
RMAPI Matrix QuaternionToMatrix(Quaternion q)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()

    float a2 = q.x*q.x;
    float b2 = q.y*q.y;
    float c2 = q.z*q.z;
    float ac = q.x*q.z;
    float ab = q.x*q.y;
    float bc = q.y*q.z;
    float ad = q.w*q.x;
    float bd = q.w*q.y;
    float cd = q.w*q.z;

    result.m0 = 1 - 2*(b2 + c2);
    result.m1 = 2*(ab + cd);
    result.m2 = 2*(ac - bd);

    result.m4 = 2*(ab - cd);
    result.m5 = 1 - 2*(a2 + c2);
    result.m6 = 2*(bc + ad);

    result.m8 = 2*(ac + bd);
    result.m9 = 2*(bc - ad);
    result.m10 = 1 - 2*(a2 + b2);

    return result;
}

// Get rotation quaternion for an angle and axis
// NOTE: Angle must be provided in radians
RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
{
    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };

    float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);

    if (axisLength != 0.0f)
    {
        angle *= 0.5f;

        float length = 0.0f;
        float ilength = 0.0f;

        // Vector3Normalize(axis)
        length = axisLength;
        if (length == 0.0f) length = 1.0f;
        ilength = 1.0f/length;
        axis.x *= ilength;
        axis.y *= ilength;
        axis.z *= ilength;

        float sinres = sinf(angle);
        float cosres = cosf(angle);

        result.x = axis.x*sinres;
        result.y = axis.y*sinres;
        result.z = axis.z*sinres;
        result.w = cosres;

        // QuaternionNormalize(q);
        Quaternion q = result;
        length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
        if (length == 0.0f) length = 1.0f;
        ilength = 1.0f/length;
        result.x = q.x*ilength;
        result.y = q.y*ilength;
        result.z = q.z*ilength;
        result.w = q.w*ilength;
    }

    return result;
}

// Get the rotation angle and axis for a given quaternion
RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
{
    if (fabsf(q.w) > 1.0f)
    {
        // QuaternionNormalize(q);
        float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
        if (length == 0.0f) length = 1.0f;
        float ilength = 1.0f/length;

        q.x = q.x*ilength;
        q.y = q.y*ilength;
        q.z = q.z*ilength;
        q.w = q.w*ilength;
    }

    Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
    float resAngle = 2.0f*acosf(q.w);
    float den = sqrtf(1.0f - q.w*q.w);

    if (den > EPSILON)
    {
        resAxis.x = q.x/den;
        resAxis.y = q.y/den;
        resAxis.z = q.z/den;
    }
    else
    {
        // This occurs when the angle is zero.
        // Not a problem: just set an arbitrary normalized axis.
        resAxis.x = 1.0f;
    }

    *outAxis = resAxis;
    *outAngle = resAngle;
}

// Get the quaternion equivalent to Euler angles
// NOTE: Rotation order is ZYX
RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
{
    Quaternion result = { 0 };

    float x0 = cosf(pitch*0.5f);
    float x1 = sinf(pitch*0.5f);
    float y0 = cosf(yaw*0.5f);
    float y1 = sinf(yaw*0.5f);
    float z0 = cosf(roll*0.5f);
    float z1 = sinf(roll*0.5f);

    result.x = x1*y0*z0 - x0*y1*z1;
    result.y = x0*y1*z0 + x1*y0*z1;
    result.z = x0*y0*z1 - x1*y1*z0;
    result.w = x0*y0*z0 + x1*y1*z1;

    return result;
}

// Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
// NOTE: Angles are returned in a Vector3 struct in radians
RMAPI Vector3 QuaternionToEuler(Quaternion q)
{
    Vector3 result = { 0 };

    // Roll (x-axis rotation)
    float x0 = 2.0f*(q.w*q.x + q.y*q.z);
    float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
    result.x = atan2f(x0, x1);

    // Pitch (y-axis rotation)
    float y0 = 2.0f*(q.w*q.y - q.z*q.x);
    y0 = y0 > 1.0f ? 1.0f : y0;
    y0 = y0 < -1.0f ? -1.0f : y0;
    result.y = asinf(y0);

    // Yaw (z-axis rotation)
    float z0 = 2.0f*(q.w*q.z + q.x*q.y);
    float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
    result.z = atan2f(z0, z1);

    return result;
}

// Transform a quaternion given a transformation matrix
RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
{
    Quaternion result = { 0 };

    result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
    result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
    result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
    result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;

    return result;
}

// Check whether two given quaternions are almost equal
RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
{
#if !defined(EPSILON)
    #define EPSILON 0.000001f
#endif

    int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
                  ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
                  ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
                  ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) ||
                 (((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
                  ((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
                  ((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
                  ((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))));

    return result;
}

// Decompose a transformation matrix into its rotational, translational and scaling components
RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
{
    // Extract translation.
    translation->x = mat.m12;
    translation->y = mat.m13;
    translation->z = mat.m14;

    // Extract upper-left for determinant computation
    const float a = mat.m0;
    const float b = mat.m4;
    const float c = mat.m8;
    const float d = mat.m1;
    const float e = mat.m5;
    const float f = mat.m9;
    const float g = mat.m2;
    const float h = mat.m6;
    const float i = mat.m10;
    const float A = e*i - f*h;
    const float B = f*g - d*i;
    const float C = d*h - e*g;

    // Extract scale
    const float det = a*A + b*B + c*C;
    Vector3 abc = { a, b, c };
    Vector3 def = { d, e, f };
    Vector3 ghi = { g, h, i };

    float scalex = Vector3Length(abc);
    float scaley = Vector3Length(def);
    float scalez = Vector3Length(ghi);
    Vector3 s = { scalex, scaley, scalez };

    if (det < 0) s = Vector3Negate(s);

    *scale = s;

    // Remove scale from the matrix if it is not close to zero
    Matrix clone = mat;
    if (!FloatEquals(det, 0))
    {
        clone.m0 /= s.x;
        clone.m5 /= s.y;
        clone.m10 /= s.z;

        // Extract rotation
        *rotation = QuaternionFromMatrix(clone);
    }
    else
    {
        // Set to identity if close to zero
        *rotation = QuaternionIdentity();
    }
}

#endif  // RAYMATH_H