1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
#ifndef MATH_H
#define MATH_H
#define PI 3.14159265358979323846264338327950288f
#define Square(x) ((x)*(x))
#define To_Radian(x) ((x) * PI / 180.0f)
#define To_Degree(x) ((x) * 180.0f / PI)
#define ABS(x) ((x) < 0 ? (-(x)) : (x))
// @todo:
// - convert these to column major calculations for the opengl path
// - make everything simd
r32 clampf(r32 x, r32 bottom, r32 top)
{
if (x < bottom)
{
x = bottom;
}
else if (x > top)
{
x = top;
}
return x;
}
// ==== Vector Math ====
union Vec2 {
struct {
r32 x;
r32 y;
};
r32 data[2];
Vec2 operator+(const r32& scaler) const {
Vec2 res;
res.x = this->x + scaler;
res.y = this->y + scaler;
return res;
}
Vec2 operator+(const Vec2& v) const {
Vec2 res;
res.x = this->x + v.x;
res.y = this->y + v.y;
return res;
}
};
union Vec3 {
struct {
r32 x;
r32 y;
r32 z;
};
r32 data[3];
};
union Vec4 {
struct {
r32 x;
r32 y;
r32 z;
r32 w;
};
r32 data[4];
};
union Mat4 {
Vec4 xyzw[4];
r32 data[4][4];
r32 buffer[16];
};
// ==== Vec2 ====
Vec2 mul2vf(Vec2 vec, r32 scaler)
{
Vec2 res;
res.x = vec.x * scaler;
res.y = vec.y * scaler;
return res;
}
Vec2 div2vf(Vec2 vec, r32 scaler)
{
SDL_assert(scaler != 0);
Vec2 res;
res.x = vec.x / scaler;
res.y = vec.y / scaler;
return res;
}
// ========================================================== Vec3 ==========================================================
Vec3 init3v(r32 x, r32 y, r32 z)
{
Vec3 res;
res.x = x;
res.y = y;
res.z = z;
return res;
}
Vec3 scaler_add3v(Vec3 vec, r32 scaler)
{
Vec3 res;
res.x = vec.x + scaler;
res.y = vec.y + scaler;
res.z = vec.z + scaler;
return res;
}
Vec3 scaler_multiply3v(Vec3 vec, r32 scaler)
{
Vec3 res;
res.x = vec.x * scaler;
res.y = vec.y * scaler;
res.z = vec.z * scaler;
return res;
}
Vec3 scaler_divide3v(Vec3 vec, r32 scaler)
{
Vec3 res;
res.x = vec.x / scaler;
res.y = vec.y / scaler;
res.z = vec.z / scaler;
return res;
}
Vec3 add3v(Vec3 a, Vec3 b)
{
Vec3 res;
res.x = a.x + b.x;
res.y = a.y + b.y;
res.z = a.z + b.z;
return res;
}
Vec3 subtract3v(Vec3 a, Vec3 b)
{
Vec3 res;
res.x = a.x - b.x;
res.y = a.y - b.y;
res.z = a.z - b.z;
return res;
}
r32 dot_multiply3v(Vec3 a, Vec3 b)
{
r32 x = a.x * b.x;
r32 y = a.y * b.y;
r32 z = a.z * b.z;
r32 res = x + y + z;
return res;
}
r32 magnitude3v(Vec3 vec)
{
r32 res = sqrtf(Square(vec.x) + Square(vec.y) + Square(vec.z));
return res;
}
Vec3 normalize3v(Vec3 vec)
{
r32 magnitude = magnitude3v(vec);
Vec3 res = scaler_divide3v(vec, magnitude);
return res;
}
Vec3 cross_multiply3v(Vec3 a, Vec3 b)
{
Vec3 res;
res.x = (a.y * b.z) - (a.z * b.y);
res.y = (a.z * b.x) - (a.x * b.z);
res.z = (a.x * b.y) - (a.y * b.x);
return res;
}
// ============================================== Vec4, Mat4 ==============================================
Vec4 init4v(r32 x, r32 y, r32 z, r32 w)
{
Vec4 res;
res.x = x;
res.y = y;
res.z = z;
res.w = w;
return res;
}
Mat4 init_value4m(r32 value)
{
Mat4 res = {0};
res.data[0][0] = value;
res.data[1][1] = value;
res.data[2][2] = value;
res.data[3][3] = value;
return res;
}
// @note: These operations are just defined and not expressed. They are kept here for completeness sake BUT
// since I have not had to do anything related to these, I have not created them.
Vec4 scaler_add4v(Vec4 vec, r32 scaler);
Vec4 scaler_subtract4v(Vec4 vec, r32 scaler);
Vec4 scaler_multiply4v(Vec4 vec, r32 scaler);
Vec4 scaler_divide4v(Vec4 vec, r32 scaler);
Vec4 add4v(Vec4 a, Vec4 b);
Vec4 subtract4v(Vec4 a, Vec4 b);
Vec4 dot_multiply4v(Vec4 a, Vec4 b);
Mat4 add4m(Mat4 a, Mat4 b)
{
Mat4 res;
// row 0
res.data[0][0] = a.data[0][0] + b.data[0][0];
res.data[0][1] = a.data[0][1] + b.data[0][1];
res.data[0][2] = a.data[0][2] + b.data[0][2];
res.data[0][3] = a.data[0][3] + b.data[0][3];
// row 1
res.data[1][0] = a.data[1][0] + b.data[1][0];
res.data[1][1] = a.data[1][1] + b.data[1][1];
res.data[1][2] = a.data[1][2] + b.data[1][2];
res.data[1][3] = a.data[1][3] + b.data[1][3];
// row 2
res.data[2][0] = a.data[2][0] + b.data[2][0];
res.data[2][1] = a.data[2][1] + b.data[2][1];
res.data[2][2] = a.data[2][2] + b.data[2][2];
res.data[2][3] = a.data[2][3] + b.data[2][3];
// row 3
res.data[3][0] = a.data[3][0] + b.data[3][0];
res.data[3][1] = a.data[3][1] + b.data[3][1];
res.data[3][2] = a.data[3][2] + b.data[3][2];
res.data[3][3] = a.data[3][3] + b.data[3][3];
return res;
}
Mat4 subtract4m(Mat4 a, Mat4 b)
{
Mat4 res;
// row 0
res.data[0][0] = a.data[0][0] - b.data[0][0];
res.data[0][1] = a.data[0][1] - b.data[0][1];
res.data[0][2] = a.data[0][2] - b.data[0][2];
res.data[0][3] = a.data[0][3] - b.data[0][3];
// row 1
res.data[1][0] = a.data[1][0] - b.data[1][0];
res.data[1][1] = a.data[1][1] - b.data[1][1];
res.data[1][2] = a.data[1][2] - b.data[1][2];
res.data[1][3] = a.data[1][3] - b.data[1][3];
// row 2
res.data[2][0] = a.data[2][0] - b.data[2][0];
res.data[2][1] = a.data[2][1] - b.data[2][1];
res.data[2][2] = a.data[2][2] - b.data[2][2];
res.data[2][3] = a.data[2][3] - b.data[2][3];
// row 3
res.data[3][0] = a.data[3][0] - b.data[3][0];
res.data[3][1] = a.data[3][1] - b.data[3][1];
res.data[3][2] = a.data[3][2] - b.data[3][2];
res.data[3][3] = a.data[3][3] - b.data[3][3];
return res;
}
Vec4 multiply4vm(Vec4 vec, Mat4 mat)
{
/*
* @note: Incase I get confused about this in the future.
*
* Everything is row-order, which means that things in memory are laid out row first. So with a sample matrix
* we have this order in memory: r1c1 r1c2 r1c3 r1c4 r2c1 ... (r = row, c = column). The same holds true for
* vectors. (maybe move this explanation to the top)
*
* Now, multiply4vm will multiply a vector with a matrix. Conventionally that does not make any sense as
* a vector is usually 4x1 and a matrix ix 4x4.
* What this function considers a vector, while it is a vector, it is infact a row from a matrix, which
* means that the vector is 1x4 and the matrix is 4x4.
*
* The function is meant to supplement the matrix multiplication process to alleviate the multiple lines of code
* we have to write when multiplying the row of a left matrix to each column of the right matrix
*/
Vec4 res = { 0 };
res.x = (mat.data[0][0] * vec.x) + (mat.data[0][1] * vec.y) + (mat.data[0][2] * vec.z) + (mat.data[0][3] * vec.w);
res.y = (mat.data[1][0] * vec.x) + (mat.data[1][1] * vec.y) + (mat.data[1][2] * vec.z) + (mat.data[1][3] * vec.w);
res.z = (mat.data[2][0] * vec.x) + (mat.data[2][1] * vec.y) + (mat.data[2][2] * vec.z) + (mat.data[2][3] * vec.w);
res.w = (mat.data[3][0] * vec.x) + (mat.data[3][1] * vec.y) + (mat.data[3][2] * vec.z) + (mat.data[3][3] * vec.w);
return res;
}
Mat4 multiply4m(Mat4 a, Mat4 b)
{
Mat4 res = { 0 };
res.xyzw[0] = multiply4vm(a.xyzw[0], b);
res.xyzw[1] = multiply4vm(a.xyzw[1], b);
res.xyzw[2] = multiply4vm(a.xyzw[2], b);
res.xyzw[3] = multiply4vm(a.xyzw[3], b);
return res;
}
// ==== Matrix Transformation ====
Mat4 scaling_matrix4m(r32 x, r32 y, r32 z) // generates a 4x4 scaling matrix for scaling each of the x,y,z axis
{
Mat4 res = init_value4m(1.0f);
res.data[0][0] = x;
res.data[1][1] = y;
res.data[2][2] = z;
return res;
}
Mat4 translation_matrix4m(r32 x, r32 y, r32 z) // generates a 4x4 translation matrix for translation along each of the x,y,z axis
{
Mat4 res = init_value4m(1.0f);
res.data[0][3] = x;
res.data[1][3] = y;
res.data[2][3] = z;
return res;
}
Mat4 rotation_matrix4m(r32 angle_radians, Vec3 axis) // generates a 4x4 rotation matrix for rotation along each of the x,y,z axis
{
Mat4 res = init_value4m(1.0f);
axis = normalize3v(axis);
r32 cos_theta = cosf(angle_radians);
r32 sin_theta = sinf(angle_radians);
r32 cos_value = 1.0f - cos_theta;
res.data[0][0] = (axis.x * axis.x * cos_value) + cos_theta;
res.data[0][1] = (axis.x * axis.y * cos_value) + (axis.z * sin_theta);
res.data[0][2] = (axis.x * axis.z * cos_value) - (axis.y * sin_theta);
res.data[1][0] = (axis.x * axis.y * cos_value) - (axis.z * sin_theta);
res.data[1][1] = (axis.y * axis.y * cos_value) + cos_theta;
res.data[1][2] = (axis.y * axis.z * cos_value) + (axis.x * sin_theta);
res.data[2][0] = (axis.x * axis.z * cos_value) + (axis.y * sin_theta);
res.data[2][1] = (axis.z * axis.y * cos_value) - (axis.x * sin_theta);
res.data[2][2] = (axis.z * axis.z * cos_value) + cos_theta;
return res;
}
Mat4 perspective_projection4m(r32 left, r32 right, r32 bottom, r32 top, r32 near, r32 far)
{
Mat4 res = { 0 };
res.data[0][0] = (2.0 * near)/(right - left);
res.data[0][2] = (right + left)/(right - left);
res.data[1][1] = (2.0 * near)/(top - bottom);
res.data[1][2] = (top + bottom)/(top - bottom);
res.data[2][2] = -(far + near)/(far - near);
res.data[2][3] = -2.0*far*near/(far - near);
res.data[3][2] = -1.0;
return res;
}
Mat4 perspective4m(r32 fov, r32 aspect_ratio, r32 near, r32 far)
{
r32 cotangent = 1.0f / tanf(fov / 2.0f);
Mat4 res = { 0 };
res.data[0][0] = cotangent / aspect_ratio;
res.data[1][1] = cotangent;
res.data[2][2] = -(far + near) / (far - near);
res.data[2][3] = -2.0f * far * near / (far - near);
res.data[3][2] = -1.0f;
return res;
}
Mat4 orthographic_projection4m(r32 left, r32 right, r32 bottom, r32 top, r32 near, r32 far)
{
// @todo: understand the derivation once I am done experimenting
Mat4 res = { 0 };
res.data[0][0] = 2.0f/(right - left); res.data[0][3] = -(right + left)/(right - left);
res.data[1][1] = 2.0f/(top - bottom); res.data[1][3] = -(top + bottom)/(top - bottom);
res.data[2][2] = -2.0f/(far - near); res.data[2][3] = -(far + near)/(far - near);
res.data[3][3] = 1.0f;
return res;
}
Mat4 lookat4m(Vec3 up, Vec3 forward, Vec3 right, Vec3 position)
{
/*
* @note: The construction of the lookat matrix is not obvious. For that reason here is the supplemental matrial I have used to understand
* things while I maintain my elementary understanding of linear algebra.
* 1. This youtube video (https://www.youtube.com/watch?v=3ZmqJb7J5wE) helped me understand why we invert matrices.
* It is because, we are moving from the position matrix which is a global to the view matrix which
* is a local. It won't be very clear from this illustration alone, so you would be best served watching the video and recollecting and understanding from there.
* 2. This article (https://twodee.org/blog/17560) derives (or rather shows), in a very shallow way how we get to the look at matrix.
*
* I am guessing this is not useful for 2D stuff
*/
Mat4 res = init_value4m(1.0);
res.xyzw[0] = Vec4{ right.x, right.y, right.z, -dot_multiply3v(right, position) };
res.xyzw[1] = Vec4{ up.x, up.y, up.z, -dot_multiply3v(up, position) };
res.xyzw[2] = Vec4{ forward.x, forward.y, forward.z, -dot_multiply3v(forward, position) };
res.xyzw[3] = Vec4{ 0.0f, 0.0f, 0.0f, 1.0f };
return res;
}
Vec3 camera_look_around(r32 angle_pitch, r32 angle_yaw)
{
Vec3 camera_look = {0.0};
camera_look.x = cosf(angle_yaw) * cosf(angle_pitch);
camera_look.y = sinf(angle_pitch);
camera_look.z = sinf(angle_yaw) * cosf(angle_pitch);
camera_look = normalize3v(camera_look);
return camera_look;
}
Mat4 camera_create4m(Vec3 camera_pos, Vec3 camera_look, Vec3 camera_up)
{
// @note: We do this because this allows the camera to have the axis it looks at
// inwards be the +z axis.
// If we did not do this, then the inward axis the camera looks at would be negative.
// I am still learning from learnopengl.com but I imagine that this was done for conveniences' sake.
Vec3 camera_forward_dir = normalize3v(subtract3v(camera_pos, camera_look));
Vec3 camera_right_dir = normalize3v(cross_multiply3v(camera_up, camera_forward_dir));
Vec3 camera_up_dir = normalize3v(cross_multiply3v(camera_forward_dir, camera_right_dir));
Mat4 res = lookat4m(camera_up_dir, camera_forward_dir, camera_right_dir, camera_pos);
return res;
}
#endif
|