#include "memory.h" b8 is_power_of_two(uintptr_t x) { return (x & (x-1)) == 0; } uintptr_t fast_modulo(uintptr_t p, uintptr_t a) { return (p & (a-1)); } uintptr_t align_forward(uintptr_t ptr, size_t alignment) { uintptr_t p, a, modulo; assert(is_power_of_two(alignment)); p = ptr; a = (uintptr_t)alignment; modulo = fast_modulo(p, a); if (modulo != 0) { p += (a - modulo); } return p; } //=========================================================================================== // ---------------------------------- Arena ------------------------------------------------- //=========================================================================================== /* A cases where arena allocation WILL fail: | size = size_t + ${some_number_that_comes_up_higher_than_offset} This is because there is no check being made */ void arena_init(struct Arena* a, unsigned char* backing_store, size_t capacity) { a->buffer = backing_store; a->curr_offset = 0; a->prev_offset = 0; a->capacity = capacity; } void* arena_alloc_aligned(struct Arena* a, size_t size, size_t alignment) { void* ptr = NULL; assert(is_power_of_two(alignment)); uintptr_t curr_ptr = (uintptr_t)a->buffer + a->curr_offset; uintptr_t offset = align_forward(curr_ptr, alignment); offset = offset - (uintptr_t)a->buffer; if (size <= a->capacity - offset) { ptr = &a->buffer[offset]; a->prev_offset = a->curr_offset; a->curr_offset = offset + size; memset(ptr, 0, size); } return ptr; } void* arena_alloc(struct Arena* a, size_t size) { return arena_alloc_aligned(a, size, DEFAULT_ALIGNMENT); } void* arena_resize_aligned(struct Arena* a, void* old_memory, size_t old_size, size_t new_size, size_t alignment) { unsigned char* old = (unsigned char*)old_memory; void* ptr = NULL; assert(is_power_of_two(alignment)); if (old >= a->buffer && old < a->buffer + a->capacity) { if (a->buffer + a->prev_offset == old) { // extend_last_element if (new_size > old_size) { size_t size_increase = new_size - old_size; if (size_increase > (a->capacity - a->curr_offset)) { new_size = old_size; size_increase = 0; } memset(&a->buffer[a->curr_offset], 0, size_increase); } a->curr_offset = a->prev_offset + new_size; ptr = old_memory; } else { ptr = arena_alloc_aligned(a, new_size, alignment); if (ptr != NULL) { size_t copy_size = old_size < new_size ? old_size : new_size; memmove(ptr, old_memory, copy_size); } } } return ptr; } void* arena_resize(struct Arena* a, void* old_mem, size_t old_size, size_t new_size) { return arena_resize_aligned(a, old_mem, old_size, new_size, DEFAULT_ALIGNMENT); } void arena_clear(struct Arena *a) { a->curr_offset = 0; a->prev_offset = 0; } //=========================================================================================== // ---------------------------------- STACK ------------------------------------------------- //=========================================================================================== void stack_init(struct stack* s, void *backing_store, size_t capacity) { s->buffer = (unsigned char*)backing_store; s->prev_offset = 0; s->curr_offset = 0; s->capacity = capacity; } size_t calc_padding_with_header(uintptr_t ptr, uintptr_t alignment, size_t hdr_sz) { uintptr_t p, a, modulo, padding, space_needed; assert(is_power_of_two(alignment)); padding = space_needed = 0; p = ptr; a = alignment; modulo = fast_modulo(p, a); if (modulo != 0) { padding = a - modulo; } space_needed = (uintptr_t)hdr_sz; if (padding < space_needed) { space_needed -= padding; if (fast_modulo(space_needed, a) != 0) { padding = padding + space_needed + a; } else { padding = padding + space_needed; } } return (size_t)padding; } struct ResVoid stack_alloc_aligned(struct stack* s, size_t size, size_t alignment) { uintptr_t curr_addr, next_addr; size_t padding; struct stack_hdr *header; assert(is_power_of_two(alignment)); if (alignment > 128) { alignment = 128; } struct ResVoid result = {0}; curr_addr = (uintptr_t)s->buffer + (uintptr_t)s->curr_offset; padding = calc_padding_with_header(curr_addr, (uintptr_t)alignment, sizeof(struct stack_hdr)); if (size > s->capacity - (s->curr_offset + padding)) { result.status = MEM_FULL; return result; } next_addr = curr_addr + (uintptr_t)padding; header = (struct stack_hdr*)(next_addr - sizeof(struct stack_hdr)); header->prev_offset = s->prev_offset; header->padding = padding; s->prev_offset = s->curr_offset + padding; s->curr_offset = s->prev_offset + size; result.memory = memset((void *)next_addr, 0, size); result.bytes_count = size; return result; } struct ResVoid stack_alloc(struct stack* s, size_t size) { return stack_alloc_aligned(s, size, DEFAULT_ALIGNMENT); } enum MemStatus stack_free(struct stack* s) { uintptr_t last_ele = (uintptr_t)s->buffer + (uintptr_t)s->prev_offset; struct stack_hdr *header = (struct stack_hdr *)(last_ele - sizeof(struct stack_hdr)); uintptr_t prev_ele = (uintptr_t)s->buffer + (uintptr_t)header->prev_offset; s->curr_offset = (size_t)((last_ele - (uintptr_t)header->padding) - (uintptr_t)s->buffer); s->prev_offset = (size_t)(prev_ele - (uintptr_t)s->buffer); return MEM_OK; } struct ResVoid stack_resize_aligned(struct stack* s, void* old_memory, size_t old_size, size_t new_size, size_t alignment) { struct ResVoid result = {0}; if (old_memory < s->buffer || old_memory > s->buffer + s->capacity) { result.status = MEM_OUT_OF_BOUNDS; return result; } // is_last_element() if (s->buffer + s->prev_offset == old_memory) { if (new_size > old_size) { size_t size_difference = new_size - old_size; if (size_difference > s->capacity - s->curr_offset) { result.status = MEM_FULL; return result; } memset(&s->buffer[s->curr_offset], 0, size_difference); } s->curr_offset = s->prev_offset + new_size; result.memory = old_memory; return result; } result = stack_alloc_aligned(s, new_size, alignment); size_t min_size = old_size < result.bytes_count ? old_size : result.bytes_count; memmove(result.memory, old_memory, min_size); return result; } struct ResVoid stack_resize(struct stack* s, void* old_memory, size_t old_size, size_t new_size) { return stack_resize_aligned(s, old_memory, old_size, new_size, DEFAULT_ALIGNMENT); } void stack_clear(struct stack* s) { s->prev_offset = 0; s->curr_offset = 0; }