#ifndef MATH_H #define MATH_H #define PI 3.14159265358979323846264338327950288f #define Square(x) ((x)*(x)) #define To_Radian(x) ((x) * PI / 180.0f) #define To_Degree(x) ((x) * 180.0f / PI) r32 clampf(r32 x, r32 bottom, r32 top) { if (x < bottom) { x = bottom; } else if (x > top) { x = top; } return x; } // ==== Vector Math ==== union Vec2 { struct { r32 x; r32 y; }; r32 data[2]; }; union Vec3 { struct { r32 x; r32 y; r32 z; }; r32 data[3]; }; union Vec4 { struct { r32 x; r32 y; r32 z; r32 w; }; r32 data[4]; }; union Mat4 { Vec4 xyzw[4]; r32 data[4][4]; r32 buffer[16]; }; // ========================================================== Vec3 ========================================================== Vec3 init3v(r32 x, r32 y, r32 z) { Vec3 res; res.x = x; res.y = y; res.z = z; return res; } Vec3 scaler_add3v(Vec3 vec, r32 scaler) { Vec3 res; res.x = vec.x + scaler; res.y = vec.y + scaler; res.z = vec.z + scaler; return res; } Vec3 scaler_multiply3v(Vec3 vec, r32 scaler) { Vec3 res; res.x = vec.x * scaler; res.y = vec.y * scaler; res.z = vec.z * scaler; return res; } Vec3 scaler_divide3v(Vec3 vec, r32 scaler) { Vec3 res; res.x = vec.x / scaler; res.y = vec.y / scaler; res.z = vec.z / scaler; return res; } Vec3 add3v(Vec3 a, Vec3 b) { Vec3 res; res.x = a.x + b.x; res.y = a.y + b.y; res.z = a.z + b.z; return res; } Vec3 subtract3v(Vec3 a, Vec3 b) { Vec3 res; res.x = a.x - b.x; res.y = a.y - b.y; res.z = a.z - b.z; return res; } r32 dot_multiply3v(Vec3 a, Vec3 b) { r32 x = a.x * b.x; r32 y = a.y * b.y; r32 z = a.z * b.z; r32 res = x + y + z; return res; } r32 magnitude3v(Vec3 vec) { r32 res = sqrtf(Square(vec.x) + Square(vec.y) + Square(vec.z)); return res; } Vec3 normalize3v(Vec3 vec) { r32 magnitude = magnitude3v(vec); Vec3 res = scaler_divide3v(vec, magnitude); return res; } #ifndef FUN_CALCS r32 angle3v(Vec3 a, Vec3 b) { Vec3 a_norm = normalize3v(a); Vec3 b_norm = normalize3v(b); r32 dot_product = dot_multiply3v(a_norm, b_norm); r32 res = acosf(dot_product); return res; } #endif Vec3 cross_multiply3v(Vec3 a, Vec3 b) { Vec3 res; res.x = (a.y * b.z) - (a.z * b.y); res.y = (a.z * b.x) - (a.x * b.z); res.z = (a.x * b.y) - (a.y * b.x); return res; } // ============================================== Vec4, Mat4 ============================================== Vec4 init4v(r32 x, r32 y, r32 z, r32 w) { Vec4 res; res.x = x; res.y = y; res.z = z; res.w = w; return res; } Mat4 init_value4m(r32 value) { Mat4 res = {0}; res.data[0][0] = value; res.data[1][1] = value; res.data[2][2] = value; res.data[3][3] = value; return res; } // @note: These operations are just defined and not expressed. They are kept here for completeness sake BUT // since I have not had to do anything related to these, I have not created them. Vec4 scaler_add4v(Vec4 vec, r32 scaler); Vec4 scaler_subtract4v(Vec4 vec, r32 scaler); Vec4 scaler_multiply4v(Vec4 vec, r32 scaler); Vec4 scaler_divide4v(Vec4 vec, r32 scaler); Vec4 add4v(Vec4 a, Vec4 b); Vec4 subtract4v(Vec4 a, Vec4 b); Vec4 dot_multiply4v(Vec4 a, Vec4 b); Mat4 add4m(Mat4 a, Mat4 b) { Mat4 res; // row 0 res.data[0][0] = a.data[0][0] + b.data[0][0]; res.data[0][1] = a.data[0][1] + b.data[0][1]; res.data[0][2] = a.data[0][2] + b.data[0][2]; res.data[0][3] = a.data[0][3] + b.data[0][3]; // row 1 res.data[1][0] = a.data[1][0] + b.data[1][0]; res.data[1][1] = a.data[1][1] + b.data[1][1]; res.data[1][2] = a.data[1][2] + b.data[1][2]; res.data[1][3] = a.data[1][3] + b.data[1][3]; // row 2 res.data[2][0] = a.data[2][0] + b.data[2][0]; res.data[2][1] = a.data[2][1] + b.data[2][1]; res.data[2][2] = a.data[2][2] + b.data[2][2]; res.data[2][3] = a.data[2][3] + b.data[2][3]; // row 3 res.data[3][0] = a.data[3][0] + b.data[3][0]; res.data[3][1] = a.data[3][1] + b.data[3][1]; res.data[3][2] = a.data[3][2] + b.data[3][2]; res.data[3][3] = a.data[3][3] + b.data[3][3]; return res; } Mat4 subtract4m(Mat4 a, Mat4 b) { Mat4 res; // row 0 res.data[0][0] = a.data[0][0] - b.data[0][0]; res.data[0][1] = a.data[0][1] - b.data[0][1]; res.data[0][2] = a.data[0][2] - b.data[0][2]; res.data[0][3] = a.data[0][3] - b.data[0][3]; // row 1 res.data[1][0] = a.data[1][0] - b.data[1][0]; res.data[1][1] = a.data[1][1] - b.data[1][1]; res.data[1][2] = a.data[1][2] - b.data[1][2]; res.data[1][3] = a.data[1][3] - b.data[1][3]; // row 2 res.data[2][0] = a.data[2][0] - b.data[2][0]; res.data[2][1] = a.data[2][1] - b.data[2][1]; res.data[2][2] = a.data[2][2] - b.data[2][2]; res.data[2][3] = a.data[2][3] - b.data[2][3]; // row 3 res.data[3][0] = a.data[3][0] - b.data[3][0]; res.data[3][1] = a.data[3][1] - b.data[3][1]; res.data[3][2] = a.data[3][2] - b.data[3][2]; res.data[3][3] = a.data[3][3] - b.data[3][3]; return res; } Vec4 multiply4vm(Vec4 vec, Mat4 mat) { /* * @note: Incase I get confused about this in the future. * * Everything is row-order, which means that things in memory are laid out row first. So with a sample matrix * we have this order in memory: r1c1 r1c2 r1c3 r1c4 r2c1 ... (r = row, c = column). The same holds true for * vectors. (maybe move this explanation to the top) * * Now, multiply4vm will multiply a vector with a matrix. Conventionally that does not make any sense as * a vector is usually 4x1 and a matrix ix 4x4. * What this function considers a vector, while it is a vector, it is infact a row from a matrix, which * means that the vector is 1x4 and the matrix is 4x4. * * The function is meant to supplement the matrix multiplication process to alleviate the multiple lines of code * we have to write when multiplying the row of a left matrix to each column of the right matrix */ Vec4 res = { 0 }; res.x = (mat.data[0][0] * vec.x) + (mat.data[0][1] * vec.y) + (mat.data[0][2] * vec.z) + (mat.data[0][3] * vec.w); res.y = (mat.data[1][0] * vec.x) + (mat.data[1][1] * vec.y) + (mat.data[1][2] * vec.z) + (mat.data[1][3] * vec.w); res.z = (mat.data[2][0] * vec.x) + (mat.data[2][1] * vec.y) + (mat.data[2][2] * vec.z) + (mat.data[2][3] * vec.w); res.w = (mat.data[3][0] * vec.x) + (mat.data[3][1] * vec.y) + (mat.data[3][2] * vec.z) + (mat.data[3][3] * vec.w); return res; } Mat4 multiply4m(Mat4 a, Mat4 b) { Mat4 res = { 0 }; res.xyzw[0] = multiply4vm(a.xyzw[0], b); res.xyzw[1] = multiply4vm(a.xyzw[1], b); res.xyzw[2] = multiply4vm(a.xyzw[2], b); res.xyzw[3] = multiply4vm(a.xyzw[3], b); return res; } // ==== Matrix Transformation ==== Mat4 scaling_matrix4m(r32 x, r32 y, r32 z) // generates a 4x4 scaling matrix for scaling each of the x,y,z axis { Mat4 res = init_value4m(1.0f); res.data[0][0] = x; res.data[1][1] = y; res.data[2][2] = z; return res; } Mat4 translation_matrix4m(r32 x, r32 y, r32 z) // generates a 4x4 translation matrix for translation along each of the x,y,z axis { Mat4 res = init_value4m(1.0f); res.data[0][3] = x; res.data[1][3] = y; res.data[2][3] = z; return res; } Mat4 rotation_matrix4m(r32 angle_radians, Vec3 axis) // generates a 4x4 rotation matrix for rotation along each of the x,y,z axis { Mat4 res = init_value4m(1.0f); axis = normalize3v(axis); r32 cos_theta = cosf(angle_radians); r32 sin_theta = sinf(angle_radians); r32 cos_value = 1.0f - cos_theta; res.data[0][0] = (axis.x * axis.x * cos_value) + cos_theta; res.data[0][1] = (axis.x * axis.y * cos_value) + (axis.z * sin_theta); res.data[0][2] = (axis.x * axis.z * cos_value) - (axis.y * sin_theta); res.data[1][0] = (axis.x * axis.y * cos_value) - (axis.z * sin_theta); res.data[1][1] = (axis.y * axis.y * cos_value) + cos_theta; res.data[1][2] = (axis.y * axis.z * cos_value) + (axis.x * sin_theta); res.data[2][0] = (axis.x * axis.z * cos_value) + (axis.y * sin_theta); res.data[2][1] = (axis.z * axis.y * cos_value) - (axis.x * sin_theta); res.data[2][2] = (axis.z * axis.z * cos_value) + cos_theta; return res; } Mat4 perspective_projection_matrix4m(r32 left, r32 right, r32 bottom, r32 top, r32 near, r32 far) { Mat4 res = { 0 }; res.data[0][0] = (2.0 * near)/(right - left); res.data[0][2] = (right + left)/(right - left); res.data[1][1] = (2.0 * near)/(top - bottom); res.data[1][2] = (top + bottom)/(top - bottom); res.data[2][2] = -(far + near)/(far - near); res.data[2][3] = -2.0*far*near/(far - near); res.data[3][2] = -1.0; return res; } Mat4 perspective4m(r32 fov, r32 aspect_ratio, r32 near, r32 far) { r32 cotangent = 1.0f / tanf(fov / 2.0f); Mat4 res = { 0 }; res.data[0][0] = cotangent / aspect_ratio; res.data[1][1] = cotangent; res.data[2][2] = -(far + near) / (far - near); res.data[2][3] = -2.0f * far * near / (far - near); res.data[3][2] = -1.0f; return res; } Mat4 lookat4m(Vec3 up, Vec3 forward, Vec3 right, Vec3 position) { /* * @note: The construction of the lookat matrix is not obvious. For that reason here is the supplemental matrial I have used to understand * things while I maintain my elementary understanding of linear algebra. * 1. This youtube video (https://www.youtube.com/watch?v=3ZmqJb7J5wE) helped me understand why we invert matrices. * It is because, we are moving from the position matrix which is a global to the view matrix which * is a local. It won't be very clear from this illustration alone, so you would be best served watching the video and recollecting and understanding from there. * 2. This article (https://twodee.org/blog/17560) derives (or rather shows), in a very shallow way how we get to the look at matrix. */ Mat4 res = init_value4m(1.0); res.xyzw[0] = Vec4{ right.x, right.y, right.z, -dot_multiply3v(right, position) }; res.xyzw[1] = Vec4{ up.x, up.y, up.z, -dot_multiply3v(up, position) }; res.xyzw[2] = Vec4{ forward.x, forward.y, forward.z, -dot_multiply3v(forward, position) }; res.xyzw[3] = Vec4{ 0.0f, 0.0f, 0.0f, 1.0f }; return res; } #endif